• Title/Summary/Keyword: Acetohydrazide

Search Result 5, Processing Time 0.02 seconds

Synthesis, Characterization and Biological Studies of New Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of 2-(benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene)acetohydrazide (2-(Benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene)acetohydrazide의 Mn(II), Ni(II), Co(II), Cu(II) 및 Zn(II) 착물의 합성, 특성 및 생물학적 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.;Al-Hakimi, Ahmed N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • New series of Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of the 2-(benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene) acetohydrazide have been synthesized and characterized by elemental analysis, IR, UV-vis, $^1H$-NMR, mass and ESR spectra, magnetic susceptibility and molar conductivity measurements. The spectral data and magnetic measurements of the complexes indicate that, the geometries are either square planar or octahedral. The biological activity of the ligand and its complexes against fungi (Aspergillus nigar and Fusarium oxysporium) were investigated. The metal complexes exhibited higher activity than both the parent ligand and the corresponding metal ion.

Synthesis, Characterization and Antimicrobial Activities of Hydrazone Ligands Derived from 2-(phenylamino)acetohydrazide and Their Metal Complexes (2-(Phenylamino)acetohydrazide로부터 유도된 Hydrzone 리간드와 그들의 착물의 합성, 특성 및 항균활성)

  • EL-Saied, F.A.;Shakdofa, M.M.E.;Al-Hakimi, A.N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.444-453
    • /
    • 2011
  • VO(II), ZrO(II), Hf(IV), $UO_2$(II), Sn(II), V(V)$O_3$, Ru(III), Cd(II), Ho(III) and Yb(III) complexes of N'-(2-hydroxybenzyl)-2-(phenylamino)acetohydrazide ($H_2L^1$, 1) and N'-((3-hydroxy-naphthalen-2-yl)methylene)-2-(phenylamino)-acetohydrazide ($H_2L^2$, 13) have been synthesized and characterized by elemental analyses, $^1H$ NMR, IR, UV-Vis, conductance, thermal analyses (DTA and TG). The spectral data showed that the ligands behave as neutral bidentate, monobasic bidentate, monobasic tridentate or bibasic tridentate ligand bonded to the metal ions through the azomethine nitrogen atoms, phenolic hydroxyl group in protonated or deprotonated form and enolic or ketonic carbonyl group. The ligands and their metal complexes exhibit higher antifungal and antibacterial inhibitory effects than parent ligands and the solution of metal ions. Most of metal complexes exhibit higher antifungal activity than standard antifungal drug (amphotricene B). It is also clear that the ligands and their metal complexes have higher antifungal activity than antibacterial activity.

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.93-105
    • /
    • 2021
  • Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.

Synthesis and Pharmacological Evaluation of Some Novel 2-Mercapto Benzimidazole Derivatives

  • Nevade, Sidram A.;Lokapure, Sachin G.;Kalyane, Navanath V.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.755-760
    • /
    • 2013
  • The present study is synthesis of derivatives of N'-(4-amino-5-sulfanyl-4H-1,2,4-triazole-3-yl)-2-(1H-benzimidazole-2-ylsulfanyl) acetohydrazide (IV). Antibacterial activity tested against the E. coli and A. Substilis. Biological activities conducted by disc diffusion method. Compound $2MB_1$, $2MB_3$, $2MB_5$ inhibit the appreciable microbial growth while rest of the compound possess the moderate activities. Anti-inflammatory activity tested by reduces local edema induced in the rat paw by injection of phlogestic agent. Compound $2MB_1$, $2MB_8$, $2MB_5$, $2MB_3$ and $2MB_6$ exhibit satisfying anti-inflammatory activity while analgesic activity conducted by acetic acid induced writhing effect in mice while compound $2MB_1$, $2MB_4$ and $2MB_7$ having the good analgesic activity. The chemical structures of all newly synthesized compounds were confirmed by their IR, $^1H$ NMR and mass spectral data.

Insights into the corrosion inhibition of steel rebar in chloride-contaminated synthetic concrete pore solutions by a new hydrazone (새로운 히드라존에 의한 염화물 오염 합성 콘크리트 공극 솔루션에서 철근의 부식 억제에 대한 통찰력)

  • Lgaz, Hassane;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.101-102
    • /
    • 2022
  • A new hydrazone derivatives namely (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HIND) has been confirmed for mitigating the corrosion of the steel rebar exposed to chloride contaminated synthetic concrete pore solution (ClSCPS). The mitigation of corrosion properties has been characterized by weight loss and electrochemical methods (Electrochemical impedance, Potentiodynamic polarization studies) as well as surface observations. The presence of HIND in the ClSCPS decreased the corrosion of steel rebar by adsorption of HIND molecules on the surface of the steel rebar. The optimal HIND concentration was 0.5 mmol/L, corresponding to an inhibition efficiency of 88.4%. The use of HIND enables the corrosion process to have a higher energy barrier. X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) spectroscopy interpretations confirmed that HIND mitigates the corrosion attack on the surface steel rebar.

  • PDF