• Title/Summary/Keyword: Acetobacter pomorum

Search Result 4, Processing Time 0.02 seconds

Drosophila Gut Immune Pathway Suppresses Host Development-Promoting Effects of Acetic Acid Bacteria

  • Jaegeun Lee;Xinge Song;Bom Hyun;Che Ok Jeon;Seogang Hyun
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.637-653
    • /
    • 2023
  • The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.

Characterization of Acetobacter pomorum KJY8 Isolated from Korean Traditional Vinegar

  • Baek, Chang Ho;Park, Eun-Hee;Baek, Seong Yeol;Jeong, Seok-Tae;Kim, Myoung-Dong;Kwon, Joong-Ho;Jeong, Yong-Jin;Yeo, Soo-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1679-1684
    • /
    • 2014
  • Acetobacter sp. strains were isolated from traditional vinegar collected in Daegu city and Gyeongbuk province. The strain KJY8 showing a high acetic acid productivity was isolated and characterized by phenotypic, chemotaxonomic, and phylogenetic inference based on 16S rRNA sequence analysis. The chemotaxonomic and phylogenetic analyses revealed the isolate to be a strain of Acetobacter pomorum. The isolate showed a G+C content of 60.8 mol%. It contained $\small{LL}$-diaminopimelic acid ($\small{LL}$-$A_2pm$) as the cell wall amino acid and ubiquinone $Q_9$ (H6) as the major quinone. The predominant cellular fatty acids were $C_{18:1}w9c$, w12t, and w7c. Strain KJY8 grew rapidly on glucose-yeast extract (GYC) agar and formed pale white colonies with smooth to rough surfaces. The optimum cultivation conditions for acetic acid production by the KJY8 strain were $20^{\circ}C$ and pH 3.0, with an initial ethanol concentration of 9% (w/v) to produce an acetic acid concentration of 8% (w/v).

Quality characteristics of whey makgeolli vinegar produced using Acetobacter pomorum IWV-03 (유청 막걸리 식초 제조용 Acetobacter pomorum IWV-03 아세트산세균 분리 및 식초의 품질특성)

  • Park, Jun-Ki;Huh, Chang-Ki;Gim, Do-Woo;Kim, Yu-Jin;Kim, Su-Hwan;Kwon, Yoon-Kyung;Bae, Dal;Kim, Yong-Doo
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • The aim of this study was to develop various types of vinegar using whey. Amongst various acetic acidproducing strains, Acetobacter pomorum IWV-03 strain was selected as an excellent strain for the production of whey makgeolli vinegar. The acidity of this vinegar was found to be 5.6%. The total organic acid content and the free amino acid content of the whey makgeolli vinegar were 5.5 and 5.9 mg%, respectively, which was higher than that of the control makgeolli vinegar (5.0 and 4.5 mg%, respectively). In addition, DPPH and ABTS radical scavenging activity of whey makgeolli vinegar were 49.85 and 63.46%, respectively, which were again higher than that of control makgeolli vinegar (27.20 and 19.22%, respectively).

Quality Characteristics and Antioxidant Activity of Immature Citrus unshiu Vinegar (감귤 미숙과 식초의 품질 특성과 항산화 활성)

  • Yi, Mi-Ran;Hwang, Joon-Ho;Oh, You-Sung;Oh, Hyun-Jeong;Lim, Sang-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.250-257
    • /
    • 2014
  • To develop vinegar with immature Citrus unshiu (IC), bacterial strains with high acetic acid-producing capabilities were isolated and identified, after which their quality characteristics, total phenolic and total flavonoid contents, and antioxidant activities were measured. Five bacterial strains were isolated from naturally fermented C. unshiu, and three were identified as Acetobacter fabarum (A. sp. RIC I) and A. pomorum (A. sp. RIC II, V). A. sp. RIC V showed the highest acetic acid-producing capability and was thus chosen as the candidate strain for further acetic fermentation using IC juice. Vinegars made with 30, 35, and 40% IC juices showed acidities of 5.38, 5.38, and 5.32% and fermentation efficiencies of 73, 72, and 70%, respectively. The fermentation periods required to reach greater than 5% acidity were 11, 9, and 9 days for vinegars containing 30, 35, and 40% IC juices, respectively. Fructose and glucose contents of the vinegars increased along with total organic acid contents including acetic acid, with increasing IC juice contents. Total phenolics were 1,546.6 and $230.9{\mu}g$ GAE/mL, whereas total flavonoids were 1,004.7 and $175.1{\mu}g$ QE/mL in vinegars made with IC and mature C. unshiu (MC) juices, respectively. DPPH free radical scavenging activities were 29% and 5%, ABTS radical scavenging activities were 62.0% and 17.9%, SOA scavenging activities were 60.9% and 41.7%, and XO scavenging activities were 32.5% and 5% in vinegars made with IC and MC juices, respectively. Therefore, vinegars made with 35% and 40% IC juices using A. sp. RIC V as the acetic acid fermentation strain showed potent antioxidant activities with greater total phenolic and flavonoid contents, promoting their use as functional vinegars.