• Title/Summary/Keyword: Acetanilides

Search Result 3, Processing Time 0.016 seconds

Effect of Mixed Herbicides on Phytotoxicity of Azimsulfuron in Rice and Barnyardgrass (벼와 피에 대한 Azimsulfuron의 작용성(作用性)에 미치는 혼합제초제(混合除草劑)의 영향(影響))

  • Chun, J.C.;Ma, S.Y.;Kim, S.E.
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.232-237
    • /
    • 1995
  • Effect of azimsulfuron {1-(4,6-dimethoxypyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2H-tetrazol-5-yl) pyrazol-5-ylsulfonl]urea} combined with eight annual herbicides on shoot and root growth of rice (Oryza sativa L.) and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] was investigated. Annual herbicides used were four thiocarbamates (dimepiperate, molinate, esprocarb, and thiobencarb), two acetanilides (butachlor and pretilachlor), one urea (dymron), and one oxadiazole (oxadiazon) herbicide. Growth inhibition in rice shoot was greater with azimsulfuron mixed with the annual herbicides than with azimsulfuron only. The azimsulfuron mixtures did not bring about decrease in growth inhibition of rice shoot. However, safening effect in root growth of rice was obtained when dimepiperate, molinate and dymron were combined with greater than 10ppm of azimsulfuron. Greater inhibition in shoot and root growth of rice occurred with straight chain hydrocarbon substitute such as esprocarb and thiobencarb than with cyclohydrocarbon substitute such as dimepiperate and molinate. Application of the azimsulfuron mixtures resulted in increase. in growth inhibition of shoot and root growth of barnyardgrass as compared with when azimsulfuron only was applied.

  • PDF

Molecular physiological inhibitory effects of chloroacetanilide herbicide pretilachlor on marine dinoflagellate Prorocentrum minimum (해양 와편모조류 Prorocentrum minimum에 대한 아세트아닐라이드계 제초제 프레틸라클로르의 분자 생물학적 저해 효과)

  • Hansol Kim;Jang-Seu Ki
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.452-462
    • /
    • 2021
  • Pretilachlor (PRE) is a common acetanilide herbicide used worldwide. However, its effects on aquatic organisms, particularly marine photosynthetic life, are not sufficiently known. Herein, we evaluated the toxic effects of PRE by physiological and molecular parameters in the photosynthetic dinoflagellate Prorocentrum minimum. The cell density, pigment content, and photosynthetic parameters (Fv/Fm and PIABS) were considerably decreased with increased PRE exposure time and doses. In addition, photosynthesis-related genes, PmpsbA, PmpsaA, and PmatpB, were significantly upregulated when exposed to 1.0 mg L-1 of PRE for 24 h (p<0.001). In 72 h treatment, the relative gene expression was significantly increased (0.1 and 0.5 mg L-1; p<0.01). In contrast, PmrbcL was decreased or little changed compared to the controls. Reactive oxygen species (ROS) increased after 24 h exposure (p<0.001). However, the transcriptional fold-changes in glutathione S-transferase (GST) were significantly increased (0.5 and 1.0 mg L-1; p<0.001) at 72 h. These findings suggested that the PmGST might be involved in PRE detoxification in P. minimum. In addition, PRE may affect the photosystem function in phytoplankton similar to other acetanilides, causing severe damage or cell death.