• Title/Summary/Keyword: Acetaminophen hepatotoxicity

Search Result 78, Processing Time 0.036 seconds

Acute Hepatotoxicity and Toxicokinetics of Acetaminophen in Mice (마우스에서 아세트아미노펜의 급성간독성과 독물동태학)

  • 서경원;류정상;김효정
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 1997
  • As the development of a pharmaceutical product is a dynamic process which involves continuousfeed-back between non-clinical and clinical studies, the integration of pharmacokinetics into toxicity testing became increasingly important in recent years. Toxicokinetic measurements in the toxicity studies is considered to be an important scientific approach in the interpretation of the toxicology findings and the promotion of rational study design development. Primarily this research project was conducted to determine the systemic exposure achieved in acute toxicity test and its relationship to dose level and the time course of the toxicity study. Acute hepatotoxicity study and its relevant toxicokinetic study in mice were performed using acetarninophen (AA) as a model compound. The correlation between acute hepatotoxicity indices and toxicokinetic parameters following intraperitoneally administration of various dosages of AA in mice was evaluated and discussed minutely in the text. Based on these studies, single-dose toxicity testing of AA including kinetic studies was evaluated in ICR mice for 7 days and interpreted in the text. Our results from the integration of toxicokinetic monitoring into single-dose toxicity study enable to elucidate the relation of the exposure achieved in toxicity study to toxicological findings and assist in the selection of appropriate dose levels for use in repeated-dose toxicity or later studies.

  • PDF

Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity

  • Kim, Minjeong;Yun, Jun-Won;Shin, Kyeho;Cho, Yejin;Yang, Mijeong;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix $GeneChip^{(R)}$ Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.

Inhibitory Effect of Ligularia fischeri var. spiciformis and Its Active Component, 3,4-Dicaffeoylquinic Acid on the Hepatic Lipid Peroxidation in Acetaminophen-Treated Rat

  • Choi, Jong-Won;Park, Jung-Kwan;Lee, Kyung-Tae;Park, Kwang-Kyun;Kim, Won-Bae;Lee, Jin-Ha;Jung, Hyun-Ju;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.10 no.4
    • /
    • pp.182-189
    • /
    • 2004
  • To find the action mechanism of the MeOH extract (LFS) of Ligularia fischeri var. spiciformis herbs (Compositae) and its active component, 3,4-dicaffeoylquinic acid (DCQA) on antihepatotoxicity, the effect was investigated on hepatic lipid perxodation and drug-metabolizing enzyme activities in acetaminophen-treated rat. Pretreatment with 250 mg/kg LFS (p.o.) and 10 mg/kg DCQA (p.o.) significantly decreased hepatic lipid peroxidation caused by acetaminophen injection. Further, LFS and DCQA inhibited hepatic microsomal enzyme activation such as hepatic P-450 cytochrome $b_5$, aniline hydroxylase and aminopyrine N-demethylase, suggesting that the two substances might effectively prevent the metabolic activation or scavenge electrophilic intermediates capable of causing hepatotoxicity. Both LFS and DCQA increased hepatic glutathione content and glutathione reductase activity, indicating that both resultantly prevented hepatotoxicity via antioxidative mechanism. Therefore, it was found that LFS had antihepatotoxicity based on the antioxidative action of DCQA.

Protective Effect of Joo-Juk on Acetaminophen-induced Liver Damage in Mouse Model (Acetaminophen 유도 간 손상에 대한 주적(酒敵)의 보호 효과)

  • Kim, Sung-Zoo;Kang, Hyung-Sub;Shin, Jae-Suk;Xie, Guang-Hua;Huh, Jin;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2009
  • Acetaminophen (AP) is widely used as an over-the-counter analgesic and antipyretic drug. AP-induced hepatotoxicity is a common consequence of AP overdose and may lead to acute liver failure. In this study, we investigated the liver damage in mice using single dose (300 mg/kg) of AP and the possible protective effects of administration (50-200 mg/kg body weight) of Joo-Juk on acetaminophen-induced liver damage in mice. The alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were determined in the plasma of mice. The effect of Joo-Juk on lipid peroxidation product thiobarbituric reacting substances (TBARS) and some antioxidant enzymes superoxide dismutase (SOD), catalase, d-aminolevulinate dehydratase ($\sigma$-ALA-D) activities, and gluthathione peroxidase (GPx), were also evaluated in the mouse liver homogenate. AP caused liver damage as evident by statistically significant increased in plasma activities of AST and ALT. There were statistically significant losses in the activities of SOD, catalase, $\sigma$-ALA-D, and GPx and an increase in TBARS in the liver of AP-treated group compared with the control group. However, Joo-Juk was able to counteract these effects. These results suggest that Joo-juk can act as hepato-protectant against AP toxicity and is a good candidate for further evaluation as an effective chemotherapeutic agent.

  • PDF

Acetaminophen Induced Cytotoxicity and Altered Gene Expression in Cultured Cardiomyocytes of $H_9C_2$ Cells

  • Jin, Seon-Mi;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.11.1-11.8
    • /
    • 2012
  • Objectives: Hepatotoxicity of acetaminophen has been widely studied. However, the adverse effects on the heart have not been sufficiently evaluated. This study was performed to investigate cytotoxicity and alterations of gene expression in cultured cardiomyocytes ($H_9C_2$ cells) after exposure to acetaminophen. Methods: $H_9C_2$ cells were incubated in a 10 mM concentration of acetaminophen for the designated times (6, 12, and 24 hours), and cytotoxicity was determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Alteration of gene expression was observed by microarray analysis, and RT-PCR was performed for the three representative oxidative stress-related genes at 24 hours after treatment. Results: It revealed that acetaminophen was toxic to cardiomyocytes, and numerous critical genes were affected. Induced genes included those associated with oxidative stress, DNA damage, and apoptosis. Repressed genes included those associated with cell proliferation, myocardial contraction, and cell shape control. Conclusions: These findings provide the evidences of acetaminophen-induced cytotoxicity and changes in gene expression in cultured cardiomyocytes of $H_9C_2$ cells.

Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

  • Choi, Yoon-Hee;Lee, Hyun Sook;Chung, Cha-Kwon;Kim, Eun Ji;Kang, Il-Jun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS: AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS: AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS: These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.