• Title/Summary/Keyword: Acer ginnala

Search Result 44, Processing Time 0.019 seconds

Antioxidative Activities and Quantitative Determination of Gallotannins from Barks of Acer ginnala Maxim (신나무 수피로부터 Gallotannin 화합물의 항산화 활성 및 함량분석)

  • Choi, Sun Eun;Park, Kwan-Hee;Oh, Myoeng-Hwan;Jang, Jun-Hye;Jin, Hye-Young;Kim, Sung-Sik;Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.174-179
    • /
    • 2010
  • Activity guided isolation of 80% acetone extract from the barks of Acer ginnala Maxim. yielded five gallotannins [6-galloyl-1,5-anhydroglucitol (ginnalin B) (1), acertannin (3,6-digalloyl-1,5-anhydroglucitol) (2), methyl gallate (3), acertannin (2,6-digalloyl-1,5-anhydroglucitol) (4) and gallic acid (5)]. All of these isolated compounds from Acer ginnala(1-5) were firstly isolated from Acer ginnala Maxim. And contents of compounds from barks of Acer ginnala (Comp. 1: 0.73$\pm$0.002%, Comp. 2: 0.48$\pm$0.001%, Comp. 3: 0.66$\pm$0.002%, Comp. 4: 1.05$\pm$0.002% and Comp. 5: 0.29$\pm$0.001%) were evaluated by HPLC analysis. And, in order to evaluate anti-oxidative activities on Comp. 1-5 isolated from Acer ginnala, DPPH radical scavenging activity was measured in vitro. All of these isolated compounds from Acer ginnala exhibited potent DPPH radical scavenging activities.

Natural Dyeing of Ramie Fabrics with Acer Ginnala, Alnus Japonica and Gromwell Extracts (신나무, 오리나무 및 자초를 이용한 라미직물의 천연염색)

  • Kim, Sangyool
    • Journal of Fashion Business
    • /
    • v.18 no.4
    • /
    • pp.15-27
    • /
    • 2014
  • A natural colorant was extracted from Acer ginnala, Alnus japonica and gromwell as extractants. Studies have been made on the effects of the kind of extracts and dyeing/mordanting conditions on colorimetric changes of ramie fabrics. The color of fabrics tended to become darker as the numbers of dyeing process and mordanting process increased using three kinds of extracts. As the numbers of dyeing and mordanting increased, the ramie fabrics gradually increased to show reddish and bluish signs using Acer ginnala, Alnus japonica, and gromwell extracts(500ml and 1,000ml). In the case of 1,500ml of gromwell extracts, the ramie fabrics showed the color with more redness and yellowness. Color difference (${\Delta}E$) of dyed and mordanted fabrics increased as the numbers of dyeing and mordanting processes increased. The apparent colors of ramie fabrics using Acer ginnala were Y and GY. The Alnus japonica extracts produced Y and GY colors on ramie fabrics. With varying amount of gromwell extracts, the colors of dyed and mordanted fabrics were R, YR, GY, G, PB, P and RP, however, the main color was PB. It was concluded that the extracts of Acer ginnala, Alnus japonica and gromwell can be used as a natural dye producing black colors.

Modulative Effect of Human Hair Dermal Papilla Cell Apoptosis by Acertannin from the Barks and Xylems of Acer ginnala Maxim (신나무 유래 Acertannin의 인체 모유두 세포 Apoptosis 조절 효능)

  • Joung, Seo Woo;Choi, Sun Eun
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.1
    • /
    • pp.7-14
    • /
    • 2018
  • We isolated gallotannin, 2,6-digalloyl-1,5-anhydroglucitol, known as acertannin (1), from the barks and xylems of Acer ginnala Maxim. It is a genus of Acer species of shrubs in the family Aceraceae. A. ginnala grows in Korea, Japan and Mongolia. We accomplished the structure elucidation by confirming that the result of $^1H$,$^{13}C-NMR$,MS spectrum data was similar to previous references. We measured DPPH and ABTS radical scavenging activity in vitro to evaluate anti-oxidative activities on acertannin isolated from A. ginnala. Acertannin from A. ginnala exhibited potent DPPH and ABTS radical scavenging activities. We examined the antioxidant and apoptosis modulative effects. This examination shows that A. ginnala has not only 1,1-diphenyl-2-picryhydrazyl(DPPH) radical scavenging activity and ABTS radical scavenging activity, but also human hair dermal papilla cell protection effects. These results indicate that the barks and xylems of A. ginnala might be developed as a potent anti-oxidant, hair growth agent, and ingredient for related new functional cosmetic materials.

Antioxidative Activity of the Extracts from the Leaves and Fruits of Acer ginnala

  • Chung, Jin-Su;Lee, Min-Sun;Chung, Ji-Youn
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.45-48
    • /
    • 2001
  • The antioxidative effect of the extracts from the leaves and fruits of Acer ginnala against free radicals was studied by two different methods using DPPH radical-generating system, and hydroxyl radical-generating system $(Cu^{++}/H_2O_2\;system)$ which induces DNA strand breaking. Compared with well known antioxidative plants, green tea, Scutellaria baicalensis, the Acer ginnala extracts showed excellent radical-scavenging activity in DPPH radical-generating system and inhibited effectively hydroxyl radical induced-DNA strand breaking in a concentration-dependent manner in $Cu^{++}/H_2O_2$ system whereas the green tea extract stimulated the strand breaking at a low concentration. These results suggest that he extracts from the leaves and fruits of Acer ginnula could be good antioxidative agents.

  • PDF

Phenolic compounds from Acer ginnala Maxim (신나무의 Phenol성 화합물에 관한 화학적 연구(I))

  • Park, Woong-Yang
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.3
    • /
    • pp.212-218
    • /
    • 1996
  • Two phenolcarboxylic acids. five flavonoids and one hydrolysable tannin were isolated from the leaves of Acer ginnala Maxim. On the basis of chemical and spectroscopic evidence, the strutures of these compounds were established as gallic acid, ethylgallate, acertannin, quercetin, quercitrin, isoquercitrin, rutin, $quercetin-3-O-{\alpha}-_L-rhamnopyranosyl-2'-gallate$.

  • PDF

Isolation of Triterpenoid Saponins from the Stems of Acer ginnala Maxim (신나무 줄기로부터 Saponin 성분의 분리)

  • Son, Yeun-Kyoung;Han, Yong-Nam
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.301-304
    • /
    • 2002
  • Two triterpenoid saponine were isolated from the stems of Acer ginnala Maxim. The structures of triterpenoid saponins were established as ilexoside O, $3-O-{\alpha}-L- rhamnopyranosyl(1{\rightarrow}2)-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\beta}-D-xylopyranosyl-pubescenolic$ acid 28-{\beta}-D-glucopyranosyl$ ester(1) and ilexoside K, $3-O-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\beta}-D-xylopyranosyl-pubes-cenolic$ acid $28-{\beta}-D-glucopyranosyl$ ester(2). Their chemical structures have been elucidated on the basis of spectral methods.

Effects of Acid Rain Treatment on Height Growth of Several Landscape Tree Species, pH Value and $Al^{3+}$ Concentration in Soil: Comparison after 5 Years [I] (人工酸性雨 處理가 5年後 몇 가지 造景樹種의 樹高生長, 土壤 酸度와 可溶性 알루미늄의 濃度에 미치는 影響 [I])

  • 정용문;우수영;김판기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.249-256
    • /
    • 1997
  • To identify the long-term influence of acid rain treatment on tree growth, acid rain of various composition (pH 2.0, pH 4.0 and pH 5.6 as control) was applied to several landscape trees for five months (April through August, 1991). Tree height, pH values and $Al^{3+}$ concentration in soil were investigated. Acid rain treatments seemed to promote height growth in the first year (1991), but have become an inhibiting factor over five years. All of coniferous species and most broad-leaved species, except Acer ginnala, showed opposite trends in height responses to acid rain treatments between the first (1991) and last (1996) year. In contrast, Acer ginnala showed similar trends to acid rain treatments in the height growth between 1991 and 1996. This result suggested that Acer ginnala has a characteristic adapability to acid rain stress. pH values of surface soil were lower than those of 30 cm soil depth. This fact suggested that acid rain treatments made surface soil acidic condition. In addition, physiological characteristics (photosynthesis, stomatal condition and biomass) have to be investigated to identify the relationship between long-term effects of $AL^{3+}$ concentration and growth.

  • PDF