• Title/Summary/Keyword: Acellular human dermal matrix (ADM)

Search Result 12, Processing Time 0.025 seconds

Acellular Dermal Matrix for Wound with Large Dead Space in 3 Dogs (개의 큰 사강을 갖는 창상에서 무세포성 진피기질의 적용 3례)

  • Youp, Kyoung-A;Byeon, Ye-Eun;Lee, Sun-Tae;Kim, Hee-Jung;Cho, Ji-Young;Kweon, Oh-Kyeong;Kim, Jin-Young;Kang, Ke-Won;Kim, Wan-Hee
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.299-301
    • /
    • 2010
  • An acellular human dermal matrix (ADM) was applied to wounds from dogs with significant dead space and delayed healing. This treatment is typically effective for the treatment of wounds with subcutaneous dead space and injuries between muscular planes. The size of the dead space defect and the amount of wound discharge decreased rapidly with ADM treatment in the present study. The average time to disappearance of the dead space defect was 10 days. In addition, complications including severe inflammation were not seen in this case report.

Comparison of porcine and human acellular dermal matrix outcomes in wound healing: a deep dive into the evidence

  • Saricilar, Erin Cihat;Huang, Sarah
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.433-439
    • /
    • 2021
  • Acellular dermal matrices (ADM) are a novel graft. The goal of this systematic review is to evaluate the evidence behind differences in human and porcine ADM, irrelevant of manufacturing method, and to determine if there is enough of an evidence base to change clinical practice. An extensive literature search was performed through MEDLINE and Embase with search terms defining a population, intervention and outcome. Title and abstract exclusion were performed with other exclusion criteria. In 191 articles were found after exclusion of duplicates, with only 29 remaining following exclusions. Ten studies were found to have level I and II evidence (I=3, II=8), of which two were histopathological, one was an animal model, one was a systematic review, and six were clinical. The remaining studies were reviewed and considered for discussion, but did not hold high enough standards for medical evidence. Strong clinical evidence already exists for the use of human ADM, but questions of access, cost, and ethics require consideration of a xenograft. Histopathologically, evidence suggests minimal long-term differences between human and porcine ADM, although there is a short acute immune response with porcine ADM. Clinically, there is limited difference in outcomes, with a small range in effect of different ADM preparations. Considering the effectiveness of ADM in wound healing, more high-level research with appropriate statistical analysis to facilitate a future meta-analysis is recommended to justify a transition from human to porcine ADM.

Periodontal tissue engineering by hPDLF seeding on scaffold (Scaffold상에 식립한 사람치주인대섬유모세포를 통한 치주조직공학)

  • Kim, Seong Sin;Kim, Byung-Ock;Park, Joo-Cheol;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.757-765
    • /
    • 2006
  • Human periodontal ligament fibroblasts (hPDLF) are very important for curing the periodontal tissue because they can be differentiated into various cells. A tissue engineering approach using a cell-scaffold is essential for comprehending today's periodontal tissue regeneration procedure. This study examined the possibility of using an acellular dermal matrix as a scaffold for human periodontalligament fibroblast (hPDLF). The hPDLF was isolated from the middle third of the root of periodontally healthy teeth extracted for orthodontic reasons. The cells were cultured in a medium containing Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $37^{\circ}C$ in humidified air with 5% $CO_2$. The acellular dermal matrix(ADM) was provided by the US tissue banks(USA). Second passage cells were used in this study. The hPDLF cells were cultured with the acellular dermal matrix for 2 days, and the dermal matrix cultured by the hPDLF was transferred to a new petri dish and used as the experimental group. The control group was cultured without the acellular dermal matrix, The control and experimental cells were cultured for six weeks. The hPDLF cultured on the acellular dermal matrix was observed by Transmission Electron microscopy (TEM). Electron micrography shows that the hPDLF was proliferated on the acellular dermal matrix. This study suggests that the acellular dermal matrix can be used as a scaffold for hPDLF.

Does acellular dermal matrix expand in response to tissue expander inflation?

  • Yang, Chae Eun;Park, Kwang Hyun;Lee, Dong Won;Lew, Dae Hyun;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.46 no.1
    • /
    • pp.34-38
    • /
    • 2019
  • Background Acellular dermal matrices (ADMs) have recently become widely used in breast reconstruction, but the correlation between the final expander volume and the surface area of the ADM is not well understood. In this study, the expansion of the surface area of ADM and the expander volume was studied retrospectively in cases of acellular dermis-assisted tissue expander breast reconstruction. Methods Twenty cases of immediate breast reconstruction using an ADM-assisted tissue expander from January 2015 to December 2015 were evaluated. In all 20 cases, CGCryoDerm was used as the matrix, with a thickness of 1-3 mm. No slit incisions were made. Finally, the proportional increase in the area of the fully expanded ADM was compared to that of the tissue expander volume. Results The proportional increase in the ADM surface area was calculated to be from 1.1 to 2.46, with a mean value of 1.7. Additionally, under the assumption that the expander had a spherical shape, the increase in its radius (the cube root of its volume) was assessed. The range of the proportional increase in the expander radius was 1.1 to 2.24, with a mean value of 1.66. The proportional increase in the radius of the expanded ADM surface area ranged from 1.04 to 1.34, with a mean ratio of 1.28. Conclusions The results of this study confirmed that the ADM expanded when the tissue expander was inflated. However, the ADM expanded to a lesser extent than the tissue expander, indicating that the muscle and other tissues expanded more than the ADM when the tissue expander was inflated.

Effects of Cross-Linking Agents on the Stability of Human Acellular Dermal Matrix (여러 가지 가교제가 인체 무세포진피의 안정성에 미치는 영향)

  • Kang, Nak Heon;Yun, Young Mook;Woo, Jong Seol;Ahn, Jae Hyung;Kim, Jin Young
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.248-254
    • /
    • 2008
  • Purpose: Human acellular dermal matrix(ADM) is widely used in the treatment of congenital anomalies and soft tissue deficiencies. But it is rapidly degraded in the body and does not provide satisfactory results. There is a need to improve collagen fiber stability through various methods and ultimately regulate the speed of degradation. Methods: The ADMs were added with various cross-linking agents called glutaraldehyde, dimethyl 3,3'-dithiobispropionimidate to produce cross-linked acellular dermal matrices. 1,4-butanediol diglycidyl ether solution was applied with a pH of 4.5 and 9.0, respectively. The stability of cross-linked dermal matrix was observed by measuring the shrinkage temperature and the degradation rates. The cross- and non-cross linked dermis were placed in the rat abdomen and obtained after 8, 12 and 16 weeks. Results: The shrinkage temperature significantly increased and the degradation rate significantly decreased, compared to the control(p<0.05). All of cross-linked dermises were observed grossly in 16 weeks, but most of non-cross linked dermis were absorbed in 8 weeks. Histologically, the control group ADM was found to have been infiltrated with fibroblasts and most of dermal stroma were transformed into the host collagen fibers. However, infiltration of fibroblasts in the experiment was insignificant and the original collagen structure was intact. Conclusion: Collagen cross-linking increases the structural stability and decreases degradation of acellular dermis. Therefore, decrease in body absorption and increase in duration can be expected.

Meshed Acellular Dermal Matrix for Two-Staged Prepectoral Breast Reconstruction: An Institutional Experience

  • Luo, Jessica;Willis, Rhett N. Jr;Ohlsen, Suzanna M.;Piccinin, Meghan;Moores, Neal;Kwok, Alvin C.;Agarwal, Jayant P.
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • The introduction of acellular dermal matrix (ADM) to breast reconstruction has allowed surgeons to reexplore the prepectoral implant placement technique in postmastectomy breast reconstruction. Our institution adopted a novel approach using meshed ADM to lessen the financial burden of increased ADM utilization with the prepectoral breast reconstruction. This is a retrospective, single-center review of two-stage prepectoral breast reconstruction using meshed human-derived ADM for anterior prosthesis coverage. Patient demographics, oncologic data, perioperative characteristics, and complications were examined and reported as means with standard deviations. Cost-saving with the meshed technique was evaluated. Forty-eight patients (72 breasts) with a mean age of 48.5 ± 15.0 years (range 26-70 years) were included in the study. The mean follow-up time was 13.2 ± 4.4 months (range 4.1-25.8 months). Nineteen breasts (24.6%) experienced complications, with seromas being the most common complication (12.5%, n = 9). Expander removal and reoperation occurred at a rate of 8.3 and 9.7%, respectively. The average time to drain removal was 18.8 ± 6.6 days (range 8-32 days). Meshed ADM provided an average cost savings of $6,601 for unilateral and $13,202 for bilateral reconstructions. Our study found that human-derived meshed ADM can be safely used in two-staged prepectoral tissue expander-based breast reconstruction and can result in significant cost savings.

Inlay graft of acellular dermal matrix to prevent incisional dehiscence after radiotherapy in prosthetic breast reconstruction

  • Kim, Mi Jung;Ahn, Sung Jae;Fan, Kenneth L.;Song, Seung Yong;Lew, Dae Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.46 no.6
    • /
    • pp.544-549
    • /
    • 2019
  • Background As the indications for postmastectomy radiotherapy expand, innovative solutions are required to reduce operative complications and reconstructive failure after prosthetic breast reconstruction. In this study, we investigated the effectiveness of acellular dermal matrix (ADM) inlay grafts in preventing postoperative wound dehiscence of irradiated breasts in the context of prosthetic breast reconstruction. Methods A retrospective analysis was conducted of 45 patients who received two-stage prosthetic reconstruction and radiotherapy following mastectomy. An ADM graft was placed beneath the incisional site during the second-stage operation in 19 patients using marionette sutures, whereas the control group did not receive the ADM reinforcement. Patient demographics and complications such as wound dehiscence, capsular contracture, peri-prosthetic infection, cellulitis, and seroma were compared between the two groups. Results During an average follow-up period of 37.1 months, wound dehiscence occurred significantly less often in the ADM-reinforced closure group (0%) than in the non-ADM group (23.1%) (P=0.032). There was no significant difference between the two groups in relation to other complications, such as capsular contracture, postoperative infection, or seroma. Conclusions The ADM inlay graft is a simple and easily reproducible technique for preventing incisional dehiscence in the setting of radiotherapy after prosthetic breast reconstruction. The ADM graft serves as a buttress to offload tension during healing and provides a mechanical barrier against pathogens. Application of this technique may serve to reduce complications in prosthetic breast reconstruction after radiotherapy.

Effects of Recombinant Human Bone Morphogenetic Protein-2 loaded Acellular Dermal Matrix on Bone Formation (재조합 골형성 단백질 2형(rh-BMP-2) 함유 무세포성 진피조직(acellualr dermal matrix)의 골재생 효과)

  • Song, Dae-Seok;Kim, Tae-Gyun;Jung, Ui-Won;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.511-522
    • /
    • 2007
  • Introduction : The purpose of this study was to evaluate the possibility of the acellular dermal matrix (ADM) as a barrier membrane for bone regeneration, and to evaluate the osteogenic effect of ADM as a carrier system for rhBMP-2 in the rat calvarial defect model. Materials and Methods: An 8-mm, calvarial, critical-size osteotomy defect was created in each of 60 male Spraque-Dawley rats(weight $250{\sim}300g$). Three groups of 20 animals, each received either rhBMP-2(0.025mg/ml) in an ADM carrier, ADM only, or negative surgical control. And each group was divided into 2- and 8-weeks healing intervals. The groups were evaluated by histologic and histomorphometric parameters(10 animals/group/healing intervals). Data were expressed as $means{\pm}standard$ deviations($m{\pm}SD$). Comparisons between experimental and control groups were made using two-way ANOVA and post hoc t-test. Comparisons between 2 weeks and 8 weeks were made using paired t-test. The level of statistical difference was defined as P< 0.05. Results : The ADM group and rhBMP-2/ADM group results in enhanced local bone formation in the rat calvarial defect at both 2 and 8 weeks. The amount of defect closure and new bone formation were significantly greater in the rhBMP-2/ADM group relative to ADM group(P<0.05). At 8 weeks, the majority of ADM in the defect was contracted, and integrated with surrounding host tissues. In addition, host cell infiltration and neovascularization of the ADM in the absence of an inflammatory response were observed, and the newly formed bone around ADM showed a continuous remodeling and consolidation. Conclusion : The results of the present study indicated that ADM may be used as a barrier membrane for bone regeneration and that may be employed as a delivery system for BMPs.

Bacterial cellulose matrix and acellular dermal matrix seeded with fibroblasts grown in platelet-rich plasma supplemented medium, compared to free gingival grafts: a randomized animal study

  • Abraao Moratelli Prado;Cimara Fortes Ferreira;Luismar Marques Porto;Elena Riet Correa Rivero;Ricardo de Souza Magini;Cesar Augusto Magalhaes Benfatti;Jair Rodriguez-Ivich
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.1
    • /
    • pp.25-36
    • /
    • 2024
  • Purpose: Mucogingival defects (MGDs), such as dental root recessions, decreased vestibular depth, and absence of keratinized tissues, are commonly seen in dental clinics. MGDs may result in functional, aesthetic, and hygienic concerns. In these situations, autogenous soft tissue grafts are considered the gold-standard treatment. This study compares the healing process of free gingival grafts (FGGs) to bacterial cellulose matrix (BCM) and human acellular dermal matrix (ADM) seeded with fibroblasts from culture supplemented with platelet-rich plasma in a rat model. Methods: Surgical defects were made in rats, which received the following treatments in a randomized manner: group I, negative control (defect creation only); group II, positive control (FGG); group III, BCM; group IV, BCM + fibroblasts; group V, ADM; and group VI, ADM + fibroblasts. Clinical, histological, and immunological analyses were performed 15 days after grafting. Clinical examinations recorded epithelium regularity and the presence of ulcers, erythema, and/or edema. Results: The histological analysis revealed the degree of reepithelization, width, regularity, and presence of keratin. The Fisher exact statistical test was applied to the results (P<0.05). No groups showed ulcers except for group I. All groups had regular epithelium without erythema and without edema. Histologically, all groups exhibited regular epithelium with keratinization, and myofibroblasts were present in the connective tissue. The groups that received engineered grafts showed similar clinical and histological results to the FGG group. Conclusions: Within the limitations of this study, it was concluded that BCM and ADM can be used as cell scaffolds, with ADM yielding the best results. This study supports the use of this technical protocol in humans.