• Title/Summary/Keyword: Accuracy on calculation

Search Result 1,067, Processing Time 0.025 seconds

A Study on Fluid Intake and Output Measurements (수분 섭취 및 배설량의 측정방법에 관한 연구)

  • Choi, Smi;Yang, Young-Hee;Jung, Yun
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.1
    • /
    • pp.88-98
    • /
    • 1995
  • The Fluid and electrolytes balance in the body is of critical importance in maintaining good health. When the fluid and electrolyte imbalance is present, patients are in great danger. They must be assessed immediately by a nurse so that appropriate treatment can be started as soon as possible. Patients' fluid intake and output records contain highly important information for the diagnosis and treatment of fluid imbalance, but, these records are often inaccurate and the method of recording the fluid intake is not universal for every hospital. Be-cause they are few quantitative measurements of a patient's hydration, the need to improve the accuracy of fluid intake records is very important. However, very few studies have been done to investigate the accuracy of measurements of patients' fluid intake and output. The purpose of this study was to investigate the methods used for calculation of fluid intake which is most similar to fluid output in normal adults and hospitalized patients. This study focused on three different calculation methods for fluid intake and compared these to fluid output and developed suggestions as to the ideal way to record fluid in-take. Data for 43 hospitalized patients and 37 normal adults were analyzed. The findings of this study are as follows ; 1) In normal adults, the daily intake of water which enteres by the oral route was 2415m1 (the first method of calculation). The daily intake of water in the form of pure water or some other beverage was 1365m1 (the third method of calculation) The daily intake of water including fresh fruits and vegetables, rice, porridges, and Me m which have water content more than 80% were 2186m1 (the second method of calculation). 2) The urine output of the normal adults was 1350m1. This apprroximates the amount of fluid an adult takes in the form of pure water. 3) In patient group, the total intake of water was 2550m1 (the first method of calculation). The in-take of water in the form of pure water or as some other beverage and IV fluid was 1661m1 (the third method of calculation). The daily in-take of water including foods which have high water content was 2356m1 (the second method of calculation). 4) The urine output of the patient's group was 1728m1. This approximates the amount of fluid an adult takes in the form of pure water. 5) Investigation of the method of calculation of the patient fluid intake showed that among the 31 hospitals studied, only eight use the third method of calculation which reflects the most close value to urine output. From the results obtained in this study, it was indicated that the amount of fluid taken in the form of pure water reflects the most close value to urine output. Therefore, it can be suggested that the third method of calculation which includes water in-take only in the form of pure water or beverage should be used as patients' fluid intake record.

  • PDF

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

A Theoretical Study on the Compressibility Factor of Hydrogen Gas in the High Pressure Tank (고압탱크에서 수소가스의 압축성 인자에 관한 이론적 연구)

  • JI-QIANG LI;HENG XU;JI-CHAO LI;JEONG-TAE KWON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.162-168
    • /
    • 2023
  • The fast refueling process of compressed hydrogen has an important impact on the filling efficiency and safety. With the development and use of hydrogen energy, the demand for precision measurement of filling hydrogen thermodynamic parameters is also increasing. In this paper, the compressibility factor calculation model of high-pressure hydrogen gas was studied, and the basic equation of state and thermo-physical parameters were calculated. The hydrogen density data provided by the National Institute of Standards and Technology was compared with the calculation results of each model. Results show that at a pressure of 0.1-100 MPa and a temperature of 233-363 K, the calculation accuracy of the Zheng-Li equation of state was less than 0.5%. In the range of 0.1-70 MPa, the accuracy of Redich-Kwong equation is less than 3%. The hydrogen pressure more influences on the compressibility factor than the hydrogen temperature does. Using the Zheng-Li equation of state to calculate the compressibility factor of on-board high pressure hydrogen can obtain high accuracy.

A Study on the Analysis of Geo-Accuracy with KOMPSAT-1 EOC Pass Imagery (KOMPSAT-1 EOC Pass 영상의 기하정확도 분석에 관한 연구)

  • 서두천;임효숙
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2003
  • This study investigated the method for obtaining 3-dimensional terrain information on inaccessable areas by evaluating geometric accuracy of the EOC pass image and scene image acquired from the KOMPSAT-1 satellite. For this purpose, the following four experiments were conducted to evaluate the accuracy of the KOMPSAT-1 EOC satellite data. 1) Calculation of ground coordinates by using ancillary data and image coordinates on Level 1R that were processed by the pre-processing system of KOMPSAT-1. 2) Calculation of 3-dimensional ground coordinates from the ground coordinates of stereo images calculated by using ancillary data, based on space intersections. 3) Execution of bundle adjustment by using GCP (Ground Control Point) extracted in a part of the stereo pass image (KOMPSAT-1 EOC, 1 scene size); and then, evaluation of the ground coordinates from the calculated exterior orientation. 4) Evaluation of accuracy by applying the exterior orientation calculated from 3) To the whole pass image.

An Analysis on Effectiveness of BIM-based Area Calculation Method for Improving Quality of Korean Apartment Housing (국내 공동주택의 품질향상을 위한 BIM기반 면적산정 방법의 실효성 연구)

  • Kim, Jun-Gyu;Ryu, Jung-Rim;Choo, Seung-Yeon
    • Journal of the Korean housing association
    • /
    • v.24 no.2
    • /
    • pp.45-52
    • /
    • 2013
  • The Purpose of this study is to improve construction quality with area calculation methods from BIM design technology. BIM has been supporting public-private-organizations and academic circles as a solution technology to manage and produce informations effectively from construction field including facility manage one. BIM standards are necessary but not sufficient for achieving perfect practical application in South Korea. In particular, development of architectural rule based area calculation methods is very urgent and important to improve construction quality. To solve those problems, methods and standards on area calculation are developed and its effectiveness of the proposed BIM-based methods is defined through the analysis between the existed area calculation method and process which are 2D based. This study will not only improve economic efficiency and accuracy of the construction quality but also settle the BIM environment in the domestic architecture.

Volume Calculation Using Stereo Camera and Non-uniform Mesh (스테레오 카메라와 비균일 메시를 이용한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.429-432
    • /
    • 2012
  • In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. After camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the two volume calculation algorithms based on the triangularmeshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

  • PDF

Effect of Number of Measurement Points on Accuracy of Muscle T2 Calculations

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of the number of measurement points on the calculation of transverse relaxation time (T2) with a focus on muscle T2. Materials and Methods: This study assumed that muscle T2 was comprised of a single component. Two phantom types were measured, 1 each for long ("phantom") and short T2 ("polyvinyl alcohol gel"). Right calf muscle T2 measurements were conducted in 9 healthy male volunteers using multiple-spin-echo magnetic resonance imaging. For phantoms and muscle (medial gastrocnemius), 5 regions of interests were selected. All region of interest values were expressed as the mean ${\pm}$ standard deviation. The T2 effective signal-ratio characteristics were used as an index to evaluate the magnetic resonance image quality for the calculation of T2 from T2-weighted images. The T2 accuracy was evaluated to determine the T2 reproducibility and the goodness-of-fit from the probability Q. Results: For the phantom and polyvinyl alcohol gel, the standard deviation of the magnetic resonance image signal at each echo time was narrow and mono-exponential, which caused large variations in the muscle T2 decay curves. The T2 effective signal-ratio change varied with T2, with the greatest decreases apparent for a short T2. There were no significant differences in T2 reproducibility when > 3 measurement points were used. There were no significant differences in goodness-of-fit when > 6 measurement points were used. Although the measurement point evaluations were stable when > 3 measurement points were used, calculation of T2 using 4 measurement points had the highest accuracy according to the goodness-of-fit. Even if the number of measurement points was increased, there was little improvement in the probability Q. Conclusion: Four measurement points gave excellent reproducibility and goodness-of-fit when muscle T2 was considered mono-exponential.

A Study on Direction Finding Accuracy Analysis for Airborne ESM (항공용 전자전장비의 방향탐지 정확도 분석기법)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.63-73
    • /
    • 2008
  • The helicopter position, heading data and the direction finding data of ESM are essentially required to compensate the parallax and analyze the direction finding accuracy of heliborne ESM in flight test phase. In the case of the long test range compared with small platform like as LYNX helicopter and Jisim Island test site, the parallax compensation for direction finding accuracy calculation and GPS position error can be neglected. In this paper, the direction finding accuracy on the basis of helicopter propeller was calculated by coordinate changing between helicopter and transmitting antenna from WGS84 coordinate to navigation coordinate using helicopter position and direction finding data.

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Moments calculation for truncated multivariate normal in nonlinear generalized mixed models

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.377-383
    • /
    • 2020
  • The likelihood-based inference in a nonlinear generalized mixed model often requires computing moments of truncated multivariate normal random variables. Many methods have been proposed for the computation using a recurrence relation or the moment generating function; however, these methods rely on high dimensional numerical integrations. The numerical method is known to be inefficient for high dimensional integral in accuracy. Besides the accuracy, the methods demand too much computing time to use them in practical analyses. In this note, a moment calculation method is proposed under an assumption of a certain covariance structure that occurred mostly in generalized mixed models. The method needs only low dimensional numerical integrations.