• Title/Summary/Keyword: Accuracy of weather information

Search Result 220, Processing Time 0.025 seconds

A Complex Valued ResNet Network Based Object Detection Algorithm in SAR Images (복소수 ResNet 네트워크 기반의 SAR 영상 물체 인식 알고리즘)

  • Hwang, Insu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.392-400
    • /
    • 2021
  • Unlike optical equipment, SAR(Synthetic Aperture Radar) has the advantage of obtaining images in all weather, and object detection in SAR images is an important issue. Generally, deep learning-based object detection was mainly performed in real-valued network using only amplitude of SAR image. Since the SAR image is complex data consist of amplitude and phase data, a complex-valued network is required. In this paper, a complex-valued ResNet network is proposed. SAR image object detection was performed by combining the ROI transformer detector specialized for aerial image detection and the proposed complex-valued ResNet. It was confirmed that higher accuracy was obtained in complex-valued network than in existing real-valued network.

Fourier Based Image Registration Using Pyramid Edge Detection and Line Fitting (Pyramid Edge Detection과 Line Fitting을 이용한 퓨리에 기반의 영상정합)

  • Kim, Kee-Baek;Kim, Jong-Soo;Choi, Jong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.999-1000
    • /
    • 2008
  • Image Registration is used many works in image processing widely. But It is difficult to find the accuracy informations such as translation, rotation, and scaling between images. This paper proposes an algorithm that Fourier based image registration using the pyramid edge detection and line fitting. It can be estimated the informations by each sub-pixels. The proposed algorithm can be used for image registrations which high efficiency is required such as GIS, or MRI, CT, image mosaicing, weather forecasting, etc.

  • PDF

Improvement of PM10 Forecasting Performance using DNN and Secondary Data (DNN과 2차 데이터를 이용한 PM10 예보 성능 개선)

  • Yu, SukHyun;Jeon, YoungTae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1187-1198
    • /
    • 2019
  • In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.

Spatio-temporal enhancement of forest fire risk index using weather forecast and satellite data in South Korea (기상 예보 및 위성 자료를 이용한 우리나라 산불위험지수의 시공간적 고도화)

  • KANG, Yoo-Jin;PARK, Su-min;JANG, Eun-na;IM, Jung-ho;KWON, Chun-Geun;LEE, Suk-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.116-130
    • /
    • 2019
  • In South Korea, forest fire occurrences are increasing in size and duration due to various factors such as the increase in fuel materials and frequent drying conditions in forests. Therefore, it is necessary to minimize the damage caused by forest fires by appropriately providing the probability of forest fire risk. The purpose of this study is to improve the Daily Weather Index(DWI) provided by the current forest fire forecasting system in South Korea. A new Fire Risk Index(FRI) is proposed in this study, which is provided in a 5km grid through the synergistic use of numerical weather forecast data, satellite-based drought indices, and forest fire-prone areas. The FRI is calculated based on the product of the Fine Fuel Moisture Code(FFMC) optimized for Korea, an integrated drought index, and spatio-temporal weighting approaches. In order to improve the temporal accuracy of forest fire risk, monthly weights were applied based on the forest fire occurrences by month. Similarly, spatial weights were applied using the forest fire density information to improve the spatial accuracy of forest fire risk. In the time series analysis of the number of monthly forest fires and the FRI, the relationship between the two were well simulated. In addition, it was possible to provide more spatially detailed information on forest fire risk when using FRI in the 5km grid than DWI based on administrative units. The research findings from this study can help make appropriate decisions before and after forest fire occurrences.

A Case Study: Improvement of Wind Risk Prediction by Reclassifying the Detection Results (풍해 예측 결과 재분류를 통한 위험 감지확률의 개선 연구)

  • Kim, Soo-ock;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Early warning systems for weather risk management in the agricultural sector have been developed to predict potential wind damage to crops. These systems take into account the daily maximum wind speed to determine the critical wind speed that causes fruit drops and provide the weather risk information to farmers. In an effort to increase the accuracy of wind risk predictions, an artificial neural network for binary classification was implemented. In the present study, the daily wind speed and other weather data, which were measured at weather stations at sites of interest in Jeollabuk-do and Jeollanam-do as well as Gyeongsangbuk- do and part of Gyeongsangnam- do provinces in 2019, were used for training the neural network. These weather stations include 210 synoptic and automated weather stations operated by the Korean Meteorological Administration (KMA). The wind speed data collected at the same locations between January 1 and December 12, 2020 were used to validate the neural network model. The data collected from December 13, 2020 to February 18, 2021 were used to evaluate the wind risk prediction performance before and after the use of the artificial neural network. The critical wind speed of damage risk was determined to be 11 m/s, which is the wind speed reported to cause fruit drops and damages. Furthermore, the maximum wind speeds were expressed using Weibull distribution probability density function for warning of wind damage. It was found that the accuracy of wind damage risk prediction was improved from 65.36% to 93.62% after re-classification using the artificial neural network. Nevertheless, the error rate also increased from 13.46% to 37.64%, as well. It is likely that the machine learning approach used in the present study would benefit case studies where no prediction by risk warning systems becomes a relatively serious issue.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

Analysis of Phase Noise in a FM-CW Radar (FM-CW 레이다에서의 위상잡음 분석)

  • Lee, Jonggil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.758-761
    • /
    • 2009
  • It is necessary to estimate the Doppler spectrum for each range cell for the extraction of useful information from the return echoes in radar systems used for the remote sending purpose such as detection of moving targets and weather surveillance. The signal amplitude in the given frequency band is the important parameter in the detection and tracking of targets. However, the system performance can be seriously degraded if the efficient removal of the strong clutter is not possible. If the phase noise spreads both the signal and clutter, the clutter removal can be very difficult and the accuracy of frequency estimates is also deteriorated. Therefore, in this paper, the effects of phase noise are analyzed in the estimation of beat frequencies.

  • PDF

FBcastS: An Information System Leveraging the K-Maryblyt Forecasting Model (K-Maryblyt 모델 구동을 위한 FBcastS 정보시스템 개발)

  • Mun-Il Ahn;Hyeon-Ji Yang;Eun Woo Park;Yong Hwan Lee;Hyo-Won Choi;Sung-Chul Yun
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.256-267
    • /
    • 2024
  • We have developed FBcastS (Fire Blight Forecasting System), a cloud-based information system that leverages the K-Maryblyt forecasting model. The FBcastS provides an optimal timing for spraying antibiotics to prevent flower infection caused by Erwinia amylovora and forecasts the onset of disease symptoms to assist in scheduling field scouting activities. FBcastS comprises four discrete subsystems tailored to specific functionalities: meteorological data acquisition and processing, execution of the K-Maryblyt model, distribution of web-based information, and dissemination of spray timing notifications. The meteorological data acquisition subsystem gathers both observed and forecasted weather data from 1,583 sites across South Korea, including 761 apple or pear orchards where automated weather stations are installed for fire blight forecast. This subsystem also performs post-processing tasks such as quality control and data conversion. The model execution subsystem operates the K-Maryblyt model and stores its results in a database. The web-based service subsystem offers an array of internet-based services, including weather monitoring, mobile services for forecasting fire blight infection and symptoms, and nationwide fire blight monitoring. The final subsystem issues timely notifications of fire blight spray timing alert to growers based on forecasts from the K-Maryblyt model, blossom status, pesticide types, and field conditions, following guidelines set by the Rural Development Administration. FBcastS epitomizes a smart agriculture internet of things (IoT) by utilizing densely collected data with a spatial resolution of approximately 4.25 km to improve the accuracy of fire blight forecasts. The system's internet-based services ensure high accessibility and utility, making it a vital tool in data-driven smart agricultural practices.

A Study on the Performance Characteristics of Image Vehicle Detectors Depending on the Environment (환경에 따른 영상식 차량검지기의 성능 특성에 관한 연구)

  • Oh, Ju-Sam;Kim, Jin-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.119-128
    • /
    • 2021
  • The most typical method to generate traffic information is installing vehicle detectors and collecting various traffic variables. The information collection accuracy of a vehicle detector affects the reliability of the generated traffic information. The most universal vehicle detector is an image detector. This study installed a magnetic detector in the same position as an image detector and evaluated the accuracy of traffic volume and speed data depending on a variety of environment. Based on the evaluation, more errors occurred as the image detector was placed farther from the camera, whereas more errors were found to occur during the night rather than the day. Although rainfall did not affect the collection of traffic volume, it negatively affected speed data collection. Therefore, an analysis of the camera's view angle and its optimization depending on the camera installation position and height are required to enhance the currently operated image detector performance. It is judged that a separate performance evaluation criterion should be prepared in a bad weather environment.

Performance Test of Broadcast-RTK System in Korea Region Using Commercial High-Precision GNSS Receiver for Autonomous Vehicle

  • Ahn, Sang-Hoon;Song, Young-Jin;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.351-360
    • /
    • 2022
  • Autonomous vehicles require precise knowledge of their position, velocity and orientation in all weather and traffic conditions in any time. And, these information is effectively used for path planning, perception, and control that are key factors for safety of vehicle driving. For this purpose, a high precision GNSS technology is widely adopted in autonomous vehicles as a core localization and navigation method. However, due to the lack of infrastructure as well as cost issue regarding GNSS correction data communication, only a few high precision GNSS technology will be available for future commercial autonomous vehicles. Recently, a high precision GNSS sensor that is based on a Broadcast-RTK system to dramatically reduce network maintenance cost by utilizing the existing broadcasting network is released. In this paper, we present the performance test result of the broadcast-RTK-based commercial high precision GNSS receiver to test the feasibility of the system for autonomous driving in Korea. Massive measurement campaigns covering of Korea region were performed, and the obtained measurements were analyzed in terms of ambiguity fixing rate, integer ambiguity loss recovery, time to retry ambiguity fixing, average correction information update rate as well as accuracy in comparison to other high precision systems.