• 제목/요약/키워드: Accuracy of references

검색결과 79건 처리시간 0.025초

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • 제51권3호
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

사상체질과 맥진기 검사 결과와의 상관성에 대한 연구 - 국내 논문에 대한 체계적 고찰 - (Study on the Correlation between Sasang Constitution and the Data of Pulse Diagnosis Device - A Systematic Review in Korean Articles -)

  • 이혜윤;정아람;손한범;황만석;이정원;김경철;윤영주
    • 동의생리병리학회지
    • /
    • 제26권5호
    • /
    • pp.621-629
    • /
    • 2012
  • This study aimed to examine the possibility of data from pulse diagnosis device to be used for diagnosis of Sasang constitution. Systematic searches of 5 major Korean medical database were conducted for articles published up to May 2012. Searching key word was "Sasang" or "Constitution". Studies dealt with correlation between Sasang constitution and the pulse wave data from pulse diagnosis machine were included. Totally 2886 studies are searched and 3 studies are added from references of evaluated articles. Among them, 12 studies were met our inclusion criteria (2 Xishu Mac, 2 Self-made pulse diagnosis machine, 8 3D-Mac). Three of the eight 3D-Mac studies intended to develop a formula of constitutional differential diagnosis, 2 studies compared variables by Sasang constitution in healthy group and 3 studies compared variables by Sasang constitution in healthy group and special disease group. They all reported some significant variables, however results are not consistent between studies. The accuracy of the formula of constitutional differential diagnosis using 3D-Mac pulse diagnosis devices is 46.0% by now. Improvements in measuring pulse are required to achieve more accurate result and be used for diagnosis of Sasang constitution. Compensating B.M.I. among Sasang constitutional groups and separating constitutional pulse factors from acquired characteristics are also needed in further study.

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

포켓과 특징 점을 이용한 3차원 단백질 분자 형상인식 (Shape Recognition of 3-D Protein Molecules Using Feature and Pocket Points)

  • 이항찬
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.75-81
    • /
    • 2011
  • 단백질 분자는 포켓 위치에서 유사한 형상을 갖는 다른 분자와 결합되며, 포켓은 단백질 분자의 형상을 묘사하기 위한 참조 점으로 사용될 수 있다. Harris 검출기는 2 차원이나 3차원 객체의 특징 점을 검출하기 위해 널리 사용된다. 특징 점들은 데이터의 변화율이 높은 영역과 포켓 영역에서 발견된다. 일반적으로 포켓 영역은 함몰된 형태로 존재하기 때문에 이 영역에는 다른 영역에 비해 다수의 특징 점들이 존재한다. 특징 점들을 포함하는 voxel cube를 연속적으로 분할함으로써 포켓 영역을 발견할 수 있었고, 포켓 영역의 중심 좌표와 특징 점들 간의 Euclidean 거리를 계산한 후 이들을 크기순으로 정렬 하였다. 정렬된 거리에 대한 그래프는 단백질 분자의 형상과 특징 점들의 분포에 대한 정보를 제공하므로 단백질 분자를 형상별로 분리 할 수 있었다. 본 연구에서는 인위적인 잡음을 단백질 분자에 추가하여 형상이 왜곡된 분자를 얻었고, 왜곡된 분자에 대해서도 95 % 이상의 정확 도로 형상을 인식 할 수 있었다. 정확한 단백질 분자의 형상 인식은 분자들 간의 결합특성을 예측할 수 있는 중요한 정보를 제공한다.

전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석 (Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.1-13
    • /
    • 2003
  • 본 연구에서는 전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석을 수행할 수 있는 일반이론을 제시하기 위하여, 3차원 연속체에 대한 가상일의 원리로부터 전단변형 효과를 고려하고 비대칭 박벽단면과 ?(Warping)을 포함하는 변위장을 도심 축에 대해 정의한 후 곡선보의 변형도-변위관계로부터 공간 박벽 곡선보의 일반화된 탄성변형에너지와 운동에너지를 새롭게 유도한다. 또한, 전단변형이 고려된 곡선보의 총포텐셜에너지에 대해 변분을 취함으로써 평형방정식과 힘-변위관계를 제시한다. 한편, 제시된 이론에 대해 등매개 보요소를 도입하여 유한요소 정식화를 수행하였으며 곡선보의 동적 거동특성을 조사하기 위하여 전단변형, 곡률효과 그리고 진동모드에 대한 매개변수 연구를 수행한다. 마지막으로, 본 연구의 타당성을 입증하기 위하여, 다양한 해석예제에 대한 3차원 고유진동수를 산정하고 타 연구자들의 결과 및 ABAQUS의 쉘요소를 이용한 해석결과와 비교ㆍ검증한다.

Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment

  • Wang, Jian-Tao;Wu, Xiao-Hong;Yang, Bin;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.681-695
    • /
    • 2021
  • Many existing transmission or communication towers designed several decades ago have undergone nonreversible performance degradation, making it hardly meet the additional requirements from upgrades in wind load design codes and extra services of electricity and communication. Therefore, a new-type non-destructive reinforcement method was proposed to reduce the on-site operation of drilling and welding for improving the quality and efficiency of reinforcement. Six built-up steel angle members were tested under compression to examine the reinforcement performance. Subsequently, the cyclic loading test was conducted on a pair of steel angle tower sub-structures to investigate the reinforcement effect, and a simplified prediction method was finally established for calculating the buckling bearing capacity of those new-type retrofitted built-up steel angles. The results indicates that: no apparent difference exists in the initial stiffness for the built-up specimens compared to the unreinforced steel angles; retrofitting the steel angles by single-bolt clamps can guarantee a relatively reasonable reinforcement effect and is suggested for the reduced additional weight and higher construction efficiency; for the substructure test, the latticed substructure retrofitted by the proposed reinforcement method significantly improves the lateral stiffness, the non-deformability and energy dissipation capacity; moreover, an apparent pinching behavior exists in the hysteretic loops, and there is no obvious yield plateau in the skeleton curves; finally, the accuracy validation result indicates that the proposed theoretical model achieves a reasonable agreement with the test results. Accordingly, this study can provide valuable references for the design and application of the non-destructive upgrading project of steel angle towers.

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석 (Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method)

  • 조진래;이홍우;하세윤;박태학;이우용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문에서는 2차원 사각탱크내 비압축성, 비점성, 비회전 유동에 대한 비선형 슬로실 해석을 다룬다. 유체영역의 지배방정식으로 포텐셜 이론에 기반을 둔 라플라스 방정식을 사용한다. 대변형의 슬로싱 거동을 표현하기 위하여 베르누이 방정식으로부터 유도된 운동 및 동역학적 자유표면 경계조건을 적용한다. 이러한 비선형 슬로싱 문제는 9결점 요소를 사용한 유한요소법에 의하여 해석되어 진다. 경계조건에 대한 시간적분과 정확한 속도계산을 위하여 각각 예측자-수정자 기법 및 최소자승법을 도입하였다. 또한, 자유표면 추적에서 야기되는 안정성 문제는 시간변동에 대한 자유표면 위치를 직접 계산함으로써 확보할 수 있었다. 외부 조화가진에 대한 본 논문의 결과는 선형이론해 또는 참고문헌의 결과와 비교하여 매우 정확하고 안정적이었다. 프로그램 검증 후, 유체높이와 가진크기에 대한 슬로싱 응답특성을 분석하였다.