• 제목/요약/키워드: Accuracy of manufacturing

검색결과 1,386건 처리시간 0.026초

정밀회전체의 언밸런스 변화에 따른 진동과 Al6061 알루미늄 합금 가공에 미치는 영향 (Effect of Unbalance on Vibration and Machining of Al6061 Aluminum Alloy in Precision Rotator)

  • 김민수;김정태;박석우;정동욱;최선호;구본흔;윤상환
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.76-82
    • /
    • 2021
  • At present, with the development of precision instruments, high dimensional accuracy of workpieces must be ensured. In particular, for the aluminum alloys used in automobiles, the surface roughness of the workpiece is extremely important. The dimensional accuracy and surface roughness of the workpiece is considerably affected by the rotational accuracy of the rotor. Therefore, to enhance the rotational accuracy, various variables such as those related to the components such as bearings, motors, and end mills, rotational speeds, and vibrations must be considered. In this study, the difference in the quality of the workpieces was compared considering the weight imbalance and rotational speed as variables.

구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가 (An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms)

  • 맹희영;박상욱
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

전이학습 기반 사출 성형품 burr 이미지 검출 시스템 개발 (Development of a transfer learning based detection system for burr image of injection molded products)

  • 양동철;김종선
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.1-6
    • /
    • 2021
  • An artificial neural network model based on a deep learning algorithm is known to be more accurate than humans in image classification, but there is still a limit in the sense that there needs to be a lot of training data that can be called big data. Therefore, various techniques are being studied to build an artificial neural network model with high precision, even with small data. The transfer learning technique is assessed as an excellent alternative. As a result, the purpose of this study is to develop an artificial neural network system that can classify burr images of light guide plate products with 99% accuracy using transfer learning technique. Specifically, for the light guide plate product, 150 images of the normal product and the burr were taken at various angles, heights, positions, etc., respectively. Then, after the preprocessing of images such as thresholding and image augmentation, for a total of 3,300 images were generated. 2,970 images were separated for training, while the remaining 330 images were separated for model accuracy testing. For the transfer learning, a base model was developed using the NASNet-Large model that pre-trained 14 million ImageNet data. According to the final model accuracy test, the 99% accuracy in the image classification for training and test images was confirmed. Consequently, based on the results of this study, it is expected to help develop an integrated AI production management system by training not only the burr but also various defective images.

가공정밀도에 영향을 미치는 환경요소 분석 (Analysis of Environmental Factors Affecting the Machining Accuracy)

  • 김영복;이의삼;박준;황연;이준기
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

밀리부품 성형해석을 통한 Micro-Former의 거동해석 (Structural analysis of the Micro-Former based on results from the forming analysis for milli components)

  • 윤종헌;허훈;김승수;최태훈;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.118-121
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components cannot be formed by the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable fur accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component.

  • PDF

초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구 (A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining)

  • 이경일;김재열
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

공압실린더를 활용한 롤 피더의 간헐적 스트립 스톡 진행 정밀도 분석 (Intermittent Strip Stock Advancing Accuracy Analysis of a Prototype Pneumatic Cylinder Driven Roll Feeder)

  • 서정덕;권순홍
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.353-358
    • /
    • 2010
  • This research introduces a new and improved design for a pneumatic cylinder driven roll feeder wherein each of the principal rotating feeder parts is configured so as to have feeding accuracy and to be low manufacturing cost. The feed pitch accuracy of the proposed roll feeder was evaluated by measuring lengths of cut offs of the strip stock with a shear attached to an air press. The air press was designed, manufactured, and mounted on the same table of the proposed roll feeder such that the strip stock maintained horizontal plane until the strip stock entered into the shear. The proposed roll feeder and the air press were designed to be operated automatically by a PLC employed controller. The feed pitch accuracy of the proposed roll feeder was analyzed by setting the pitch as 10, 12.5, and 15mm. At each predetermined feed pitch, the proposed roll feeder was tested 300 times as one test set and replicated three times. The average lengths of the cut offs of the strip stock ranged from 9.98 to 10.13mm, from 12.42 to 12.57mm, and from 14.96 to 15.06mm at the predetermined 10, 12.5, and 15mm feed pitch, respectively, among the total of 900 samples of each feed pitch. Main cause of variation of the length of the cut off of the strip stock fed by the proposed roll feeder was considered to be fluctuation of the air press during recompressing period of the air compressor to pressurize the air in the air tank. The largest difference between the maximum and the minimum length of the cut off was appeared while the air compressor recompressing the air. The air compressor used for this study restricted the air delivered to the proposed roll feeder while it was still running. Thus, this air delivery restriction problem should be improved by stabilizing the air press while the proposed roll feeder is running.

롤러베어링 구조형 주축 회전체의 언밸런스 변동과 절삭표면상태 연관성에 관한 연구 (Correlation between Unbalance Variation and Cutting Surface Condition of Roller Bearing-Structured Main Spindles)

  • 하정웅;박동희;박황기;전승민;홍진표;윤상환;박종규
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.107-115
    • /
    • 2020
  • The rotation accuracy of the main spindle that determines the accuracy of CNC machine tools is closely related to the quality of production because it directly affects the shape error and surface roughness of the workpiece. Therefore, the main spindle requires high rotation accuracy, rigidity, and rotation technology. This rotation accuracy is greatly affected by the bearing, center alignment between rotating parts, assembly tolerance, and unbalance of the rotation mass. In this study, the effects of the unbalance of the rotation mass of the main spindle on the rotation accuracy were investigated experimentally. In particular, we tried to study the technical reasons for improving the unbalance of the main spindle and maintaining the rotation accuracy as we verified the correlation between the vibration characteristics of CNC machine tools due to the specifically set unbalance amount and the surface roughness of the workpiece.

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권3호
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.

고속가공 가공 정밀도 예측에 관한 연구 (A Study about an estimate about machining accuracy of High Speed Machining)

  • 이춘만;류승표;정원지;정종윤;고태조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.460-465
    • /
    • 2003
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages fur the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining and an estimate about machining accuracy of high-speed machining.

  • PDF