• Title/Summary/Keyword: Accuracy comparison

Search Result 3,230, Processing Time 0.028 seconds

A Study on the Priority of Sustainability Areas and Indicators of Domestic Smart Ports (국내 스마트 항만의 지속가능성 영역과 지표의 우선순위에 관한 연구)

  • Lee, Jae-Hoon;Chang, Myung-Hee
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.65-85
    • /
    • 2022
  • In this study, in order to derive the priority of indicators and sustainability areas of smart ports, which means ports in the digital era, previous studies and ESG, which have recently been indispensably introduced in all industries worldwide, were studied together. A hierarchical structure was established with upper evaluation items and 20 lower evaluation items in four areas (operational, environmental, social, and governance), and a relative evaluation method of weighting items among the AHP techniques was applied. The pairwise comparison questionnaire consisted of a 9-point scale proposed by Satty (1980). A survey was conducted targeting working-level workers who perform sustainability or ESG(Environmental, Social, Governance)-related work at four representative port authorities in Korea (Busan, Incheon, Ulsan, Yeosu Gwangyang). In order to increase the accuracy of the analysis results, AHP analysis was conducted on 17 questionnaires with a consistency ratio of 0.1 or less. As a result of the analysis, it was confirmed that among the four areas representing the sustainability of domestic smart ports, the operation area had the highest priority, followed by the environment area. In addition, looking at the overall priorities for the 20 detailed indicators, indicators such as operational efficiency, operational planning, energy management, and pollution measurement and management system were found to have high priority. On the other hand, it was confirmed that the social and the governance areas had relatively low importance compared to other areas.

Misinformation Effect and the type of information: A Comparison of Korean and American Sample (오정보 효과와 정보의 유형: 한국인과 미국인의 비교)

  • Yuhwa Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.25 no.2
    • /
    • pp.157-177
    • /
    • 2019
  • In Study 1, the author translated the material which is modified by Han(2017) and allows researchers to examine misinformation effect about background (temporal structure of event) and object information. Eighty-five Korean participants were participated in Study 1 and tested their memory after misled by temporal and object post-event information about a story. The translated material could produce misinformation effect in both types of information. In Study 2, a 3-way ANOVA was conducted with combined data collected from Korea and the U.S to test the effects of three IVs (whether misled or not, the type of information and the nationality of the participants) on memory after misled by temporal and object information. As results, the main effects of all three IVs, the 2-way interaction effect of whether misled or not and the type of information, and the 3-way interaction effect of all the three IVs were statistically significant. In sum, the higher accuracy rate was obtained when the participants were not misled, and they were more accurate about the information about object. Americans tended to be more accurate. The misinformation effect was larger when the participants were misled by object information. The 2-way interaction effect was found only in the Korean sample. In the discussion, the implication of the current study was discussed.

A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization (BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구)

  • Hyun-Chul Joo;Ju-Hyeong Lee;Jong-Won Lim;Jae-Hee Lee;Leen-Seok Kang
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.145-155
    • /
    • 2023
  • Recently, with the widespread adoption of Building Information Modeling (BIM) technology in the construction industry, various object detection algorithms have been used to verify errors between 3D models and actual construction elements. Since the characteristics of objects vary depending on the type of construction facility, such as buildings, bridges, and tunnels, appropriate methods for object detection technology need to be employed. Additionally, for object detection, initial object images are required, and to obtain these, various methods, such as drones and smartphones, can be used for image acquisition. The study uses a 360° camera optimized for internal tunnel imaging to capture initial images of the tunnel structures of railway and road facilities. Various object detection methodologies including the YOLO, SSD, and R-CNN algorithms are applied to detect actual objects from the captured images. And the Faster R-CNN algorithm had a higher recognition rate and mAP value than the SSD and YOLO v5 algorithms, and the difference between the minimum and maximum values of the recognition rates was small, showing equal detection ability. Considering the increasing adoption of BIM in current railway and road construction projects, this research highlights the potential utilization of 360° cameras and object detection methodologies for tunnel facility sections, aiming to expand their application in maintenance.

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.

3D Film Image Inspection Based on the Width of Optimized Height of Histogram (히스토그램의 최적 높이의 폭에 기반한 3차원 필름 영상 검사)

  • Jae-Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • In order to classify 3D film images as right or wrong, it is necessary to detect the pattern in a 3D film image. However, if the contrast of the pixels in the 3D film image is low, it is not easy to classify as the right and wrong 3D film images because the pattern in the image might not be clear. In this paper, we propose a method of classifying 3D film images as right or wrong by comparing the width at a specific frequency of each histogram after obtaining the histogram. Since, it is classified using the width of the histogram, the analysis process is not complicated. From the experiment, the histograms of right and wrong 3D film images were distinctly different, and the proposed algorithm reflects these features, and showed that all 3D film images were accurately classified at a specific frequency of the histogram. The performance of the proposed algorithm was verified to be the best through the comparison test with the other methods such as image subtraction, otsu thresholding, canny edge detection, morphological geodesic active contour, and support vector machines, and it was shown that excellent classification accuracy could be obtained without detecting the patterns in 3D film images.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

Calculation of Bearing Capacity of Tapered Drilled Shafts in Cohesionless Soils Using Shape Factor (형상계수를 이용한 사질토 지반에 타설된 테이퍼말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.13-22
    • /
    • 2008
  • Fourteen calibration ehamber tests were performed using one cylindrical and two tapered piles with different taper angles to investigate the changes of the bearing capacity of tapered piles with soil state and taper angle of piles. The results of calibration chamber tests show that the ultimate base resistance of tapered piles increases with increasing mean stress and relative density of soil. It also increases with increasing taper angle for medium sand, but with decreasing taper angle for dense sand. The ultimate shaft resistance of tapered piles increases as vertical and horizontal stresses, relative density and taper angle increase. Based on the results of model pile load tests, a new design method with shape factors for estimation of the bearing capacity of tapered piles is proposed considering the effect of soil state and taper angle on bearing capacity of tapered piles. In order to check the accuracy of predictions calculated using the new method, middle-scale field pile load tests were also conducted on cylindrical and tapered drilled shafts in clayey sand. Comparison of calculated values with measured ones shows that the new design method produces satisfactory predictions tor tapered piles.

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

Comparison of vitamin K contents in different meats commonly consumed in Korea (국내에서 소비되는 육류의 부위별 비타민 K 함량 분석 및 비교)

  • Kim, Daedong;Lee, Seogyeong;Kang, Yuri;Shin, Jaehong;Park, Jin Ju;Kim, Hyun Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.109-113
    • /
    • 2022
  • Vitamin K is a group of fat-soluble vitamins that naturally exist in phylloquinone (vitamin K1) and menaquinone (vitamin K2). In this study, the vitamin K content in different meats commonly consumed in Korea was analyzed using HPLC, and the analytical method was validated. Vitamin K1 was not detected in any of the meat samples. Vitamin K2 contents in different cuts of beef ranged from 0.00 to 5.87 ㎍/100 g, whereas the corresponding value in different parts of chicken ranged from 16.59 to 46.64 ㎍/100 g. In the case of pork, vitamin K2 contents varied from 4.33 to 22.90 ㎍/100 g. Among the different types of meat, the highest vitamin K2 content was found in boiled chicken meat and skin (46.64 ㎍/100 g). The analytical method was found to be reliable and had high accuracy. These results provide accurate nutritional information and contribute a food composition database for meat consumption.