Polyacetal resin is usually used to make molds, but it is difficult to achieve dimension accuracy during molding. Therefore it is usually necessary to cut the polyacetal resin after a molding process. Polyacetal resin is easily machining by standard machine tool. Acetal is also a thermal stable material which can be totted without coolant Another concern about the use of polyacetal resin is that it absorbs water easily, which also results in problems with dimension accuracy Therefore, in this study, the cutting resistance of water-absorbed polyacetal resin and its surface roughness after cutting in order to achieve the highest degree of accuracy in the cutting of polyacetal resin were investigated. Also, The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, we have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.
This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.
In machine learning, the performance of the system depends upon the nature of input data. The efficiency of the system improves when the behavior of the input data changes from un-normalized to normalized form. This paper experimentally demonstrated the performance of KNN, SVM, LDA and NB on Alzheimer's dataset. The dataset undertaken for the study consisted of 3 classes, i.e. Demented, Converted and Non-Demented. Analysis shows that LDA and NB gave an accuracy of 89.83% and 88.19% respectively in both the cases whereas the accuracy of KNN and SVM improved from 46.87% to 82.80% and 53.40% to 88.75% respectively when input data changed from un-normalized to normalized state. From the above results it was observed that KNN and SVM show significant improvement in classification accuracy on normalized data as compared to un-normalized data, whereas LDA and NB reflect no such change in their performance.
In a cloud environment, performance degradation, or even downtime, of virtual machines (VMs) usually appears gradually along with anomalous states of VMs. To better characterize the state of a VM, all possible performance metrics are collected. For such high-dimensional datasets, this article proposes a feature extraction algorithm based on unsupervised fuzzy linear discriminant analysis with kernel (UFKLDA). By introducing the kernel method, UFKLDA can not only effectively deal with non-Gaussian datasets but also implement nonlinear feature extraction. Two sets of experiments were undertaken. In discriminability experiments, this article introduces quantitative criteria to measure discriminability among all classes of samples. The results show that UFKLDA improves discriminability compared with other popular feature extraction algorithms. In detection accuracy experiments, this article computes accuracy measures of an anomaly detection algorithm (i.e., C-SVM) on the original performance metrics and extracted features. The results show that anomaly detection with features extracted by UFKLDA improves the accuracy of detection in terms of sensitivity and specificity.
Communications for Statistical Applications and Methods
/
제28권2호
/
pp.161-169
/
2021
The two-dimensional confusion matrix used in credit assessment, biostatistics, and many other fields consists of true positive, true negative, false positive, and false negative. Their rates, such as the true positive rate (TPR), true negative rate (TNR), false positive rate, and false negative rate, can be applied to measure its accuracy. In this study, we propose the TPR-TNR plot, a graphical method that can geometrically describe and explain these rates based on the confusion matrix. The proposed TPR-TNR plot consists of two right-angled triangles. We obtain that the TPR and TNR describe the acute angles of right-angled triangles in the plot. These acute angles can be used to determine optimal thresholds corresponding to lots of accuracy measures.
Carnegie Hubble Program II (hereafter CHP II) is a large Hubble Space Telescope (HST) observing campaign in the cycle 22 composed of a total of 184 orbits (132 primes + 52 parallels), which aims to measure H0 directly with an unprecedented accuracy. Unlike our previous efforts in CHP I which used Cepheids as a yardstick, CHP II takes the Population II (Pop II) distance indicators such as RR Lyraes and tip of the red giant branch stars (TRGBs) to set up a new calibration to Type Ia supernovae (SN Ia) distance. The Pop II distance scales have two immediate advantages over the classical Cepheid method: 1) The period-luminosity relation of the RR Lyrae has a scatter that is a factor of 2 smaller; 2) The RR Lyrae/TRGB distance scale can be applied to both elliptical and spiral galaxies. This will provide a great systematic benefit by ultimately allowing us to double the number of SN Ia distances based on geometry. By taking advantage of this Pop II route, we expect to measure H0 value to 3 % of error which will be the highest accuracy H0 measurement to date using the "Distance Ladder" method. In this talk I will present a brief background/overview on the CHP II, observations/data acquisition status, and ongoing research progress/preliminary results.
In this study, we develop a methane sensor module that can detect low concentrations below 5,000 ppm and measure up to the detection limit of 50 ppm with the NDIR method, with a long lifetime and high accuracy. Methane ($CH_4$) is one of a representative greenhouse gas, which is very explosive. Thus, it is important to quickly and accurately measure methane concentration in the air. To adjust the methane sensor for industrial field applications, a NDIR-based small sensor was implemented and characterized, where its volume was $4cm{\times}4cm{\times}2cm$ and its response time ($T_{90}$) was less than 30 sec. These results demonstrate that the proposed sensor is commercially available for low-concentration measurement, low volume, and fast response application, such as IoT sensor nodes and portable devices.
The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general study people who works on the spot has many problems on the data value. Also there are no satisfiable results until now in spite of many studys about this because the deflections of the table and the shaft supporting a workpiece influence, influence the accuracy of the table and shaft supporting a workpiece influence the accuracy of the workpiece. And there is doubt about the inspection method of measured error. In this paper Therefor we will help working more accurately on the spot by measuring analyzing displaying the defoec-tion of the table and support shaft when we load on the table and the support shaft of machining center using laser interfer-ometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tenden-cy by verifing the tendency of the error measured through the comparison of the simulated error measured through the comparison of the simulated error using ANSYS a common finite element analysis program which is able to measure heat deformation material deformation and error resulted from this study.
본 논문에서는 "축구 동영상"의 배경 분리 정확도 향상을 위한 "최적의" 수학적 모폴로지 연산자를 결정하기 위하여 정량적인 비교 평가 연구를 수행하였다. 이를 위해 본 논문에서는 여섯 가지 서로 다른 수학적 모폴로지 연산자를 동일한 실험 환경에서 비교 평가하였다. F-measure를 이용하여 평가한 결과 복구에 의한 닫기-복구에 의한 열기 연산자가 최적의 연산자임을 확인하였다. 본 논문에서 제시된 정량적 비교 평가 결과는 지능형 축구 동영상 분석 시스템 개발을 위해 배경 분리 기술을 이용하거나 축구 동영상에 특화된 배경 분리 기술을 연구하고자 하는 연구자 및 개발자들에게 실질적인 도움이 될 것으로 판단된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3301-3318
/
2016
Online social networks (OSNs) have changed the way people communicate with each other. An OSN usually encourages the participants to provide personal information such as real names, birthdays and educational background to look for and establish friendships among them. Some users are unwilling to reveal personal information on their personal pages due to potential privacy concerns, but their friends may inadvertently reveal that. In this work, we investigate the possibility of leaking personal information on Facebook in an unintentional and involuntary manner. The revealed information may be useful to malicious users for social engineering and spear phishing. We design the inference methods to find birthdays and educational background of Facebook users based on the interactions among friends on Facebook pages and groups, and also leverage J-measure to find the inference rules. The inference improves the finding rate of birthdays from 71.2% to 87.0% with the accuracy of 92.0%, and that of educational background from 75.2% to 91.7% with the accuracy of 86.3%. We also suggest the sanitization strategies to avoid the private information leakage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.