• Title/Summary/Keyword: Accuracy Measure

Search Result 2,020, Processing Time 0.035 seconds

Improvement of Form Accuracy of Micro-Features on Thin, Large-area Plate using Fast Depth Adjustment in Micro-grooving (대면적 가공물의 마이크로 그루빙에서 고속 절삭 깊이 제어를 통한 미세형상의 정밀도 향상)

  • Kang, Dong Bae;Son, Seong Min;Lee, Hyo Ryeol;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.408-413
    • /
    • 2013
  • Micro-features such as grooves and lenses, which perform optical functions in flat displays, should be manufactured with a good form accuracy because this is directly related to their optical performance. As the size of the display increases, it is very difficult to maintain a high relative accuracy because of the inherent geometric errors such as the waviness of a large-area plate. In this paper, the optical effect of these geometric errors is investigated, and surface-referenced micro-grooving to measure and compensate for such geometric errors on line is proposed to improve the form accuracy of the micro-grooves. A PZT-based fast depth adjustment servo system is implemented in the tool holder to maintain a uniform groove depth in reference to the wavy surface. Through experiments, the proposed method is shown to be an efficient way to produce high-quality micro- grooves on a wavy die surface.

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

Real-time 3-Dimensional Measurement of Lumbar Spine Range of Motion using a Wireless Sensor (무선 센서를 활용한 요추 가동 범위의 실시간 3차원 측정)

  • Jeong, Woo-Hyuk;Jee, Hae-Mi;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.713-718
    • /
    • 2012
  • Lumber spine range of motion has been used to measure of physical and functional impairment by various tools from a ruler to 3D kinematic devices. However, pre-existing tools have problems in either movement or accuracy and reliability limitations. Accurate devices are limited by fixed space whereas simple devices are limited in measuring complex movements with less accuracy. In order to solve the location, movement and accuracy limitations at once, we have developed a novice measurement device equipped with accelerometer sensor and gyroscope sensor for getting three-dimensional information of motion. Furthermore, Kalman filter was applied to the algorithm to improve accuracy. In addition, RF wireless communication was added for the user to conveniently check measured data in real time. Finally, the measurement method was improved by considering the movement by a reference point. An experiment was conducted to test the accuracy and reliability of the device by conducting a test-retest reliability test. Further modification will be conducted to used the device in various joints range of motion in clinical settings in the future.

EVALUATION OF THE ACCURACY OF THE ELECTRONIC APEX LOCATOR USING THE POLARIZING MICROSCOPE (편광현미경을 이용한 전자적근관장측정기의 정확성에 관한 연구)

  • Park, Han-Soo;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.235-243
    • /
    • 1992
  • The purpose of this study was to evaluate the accuracy of an electronic apex locator, the Neosono - M, in determining the location of the cementodentinal junction. A total of 26 teeth with 46 canals were evaluated. The apex locator was used to locate the file and the teeth extracted. The specimen were prepared with highspeed burs and sandpaper discs to a thickness of $250{\sim}300{\mu}m$. Distances were measured from the cementodentinal junction with the use of polarizing microscope. Measurements made by the apex locator were also compared with those by the X - ray. The results were as follows. 1. The apex locator and X - ray were to measure a mean value of 0.17, 0.45mm coronal to the CDJ respectively. There was no significant difference between the accuracy of the apex locator and that of X - ray. 2. There was no significant difference between the accuracy of apex locator in vital and in nonvital teeth, and between in narrow and in wide canals. 3. The files in nonvital and narrow group were apical to the CDJ significantly than those of vital and narrow, vital and wide, and non vital and wide groups.

  • PDF

Application of Receiver Operating Characteristic (ROC) Curve for Evaluation of Diagnostic Test Performance (진단검사의 특성 평가를 위한 Receiver Operating Characteristic (ROC) 곡선의 활용)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.97-101
    • /
    • 2016
  • In the field of clinical medicine, diagnostic accuracy studies refer to the degree of agreement between the index test and the reference standard for the discriminatory ability to identify a target disorder of interest in a patient. The receiver operating characteristic (ROC) curve offers a graphical display the trade-off between sensitivity and specificity at each cutoff for a diagnostic test and is useful in assigning the best cutoff for clinical use. In this end, the ROC curve analysis is a useful tool for estimating and comparing the accuracy of competing diagnostic tests. This paper reviews briefly the measures of diagnostic accuracy such as sensitivity, specificity, and area under the ROC curve (AUC) that is a summary measure for diagnostic accuracy across the spectrum of test results. In addition, the methods of creating an ROC curve in single diagnostic test with five-category discrete scale for disease classification from healthy individuals, meaningful interpretation of the AUC, and the applications of ROC methodology in clinical medicine to determine the optimal cutoff values have been discussed using a hypothetical example as an illustration.

A Study on the T&E Method for the Aircraft focused on Weapon Accuracy (항공 무장정확도 시험평가 방법에 관한 연구)

  • Hyun, Jun-Ho;Kang, Sung-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.117-133
    • /
    • 2007
  • The weapon accuracy is a basic measure of performance in the area of weapon system acquisition. It requires the establishment of correct concept and the T&E methods. Existing T&E method for aircraft weapon systems have not considered types of exact hitting area for various weapons. This study intends to suggest an optimal T&E methods in Korean T&E environment. In order to sampling and to test aircraft weapon accuracy, we need probability and statistic theories. There are many types of CEP(Circular Error Probable) methods. We recommend 2 types of CEP methods which are Lockheed Martin CEP method and Johnson CEP method. Also, suggest some other T&E methods. These methods can be used to accuracy test in the area of weapon system acquisition in the future.

The Accuracy of Glasgow Coma Scale Knowledge and Performance among Vietnamese Nurses

  • Hien, Nguyen Thi;Chae, Sun-Mi
    • Perspectives in Nursing Science
    • /
    • v.8 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the accuracy of Glasgow Coma Scale (GCS) knowledge and performance among Vietnamese nurses. Methods: A cross-sectional descriptive study was conducted using a questionnaire pertaining to the nurses' knowledge of GCS and a structured evaluation tool to measure the accuracy of their GCS scores. A total of 94 Vietnamese nurses participated in this study, all from a general hospital in Ho Chi Minh City, Vietnam. Data were analyzed by conducting a t-test, a $x^2$ test, and ANOVA. Results: This study found that the vast majority of the nurses (>90%) responded correctly to questions regarding their GCS basic knowledge; however, 52.1% of the nurses answered incorrectly questions related to clinical scenarios requiring the application of the basic knowledge. Regarding the GCS performance, the nurses demonstrated acceptable accuracy rates for each component of GCS, but those who scored well in all three components accounted for only 42.6% of the subject group. These findings indicate that the Vietnamese nurses are not able to integrate their GCS knowledge into actual practice as measured by the accuracy of GCS scoring. Conclusion: This study suggests that new educational strategies should be developed for the Vietnamese nurses to improve their performance on accurate GCS scoring based on theoretical knowledge.

  • PDF

Partial AUC and optimal thresholds (부분 AUC와 최적분류점들)

  • Hong, Chong Sun;Cho, Hyun Su
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.187-198
    • /
    • 2019
  • Extensive literature exists on how to estimate optimal thresholds based on various accuracy measures using receiver operating characteristic (ROC) and cumulative accuracy profile (CAP) curves. This paper now proposes an alternative measure to represented the specific partial area under the ROC and CAP curves. The relationship between ROC and CAP functions is examined using differential equations of the new defined partial area under curves. In addition, the relationship with the optimal thresholds under conditions of various accuracy measures for the ROC and CAP functions is also derived. We assume there are two kinds of distribution functions composing the mixed distribution as various normal distributions before finding the optimal thresholds. Corresponding type 1 and 2 errors are also explored and discussed under various conditions for accuracy measures.

On using the LPC parameter for Speaker Identification (LPC에 의한 화자 식별)

  • 조병모
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1987.11a
    • /
    • pp.82-85
    • /
    • 1987
  • Preliminary results of using the LPC parameter for text-independent speaker identification problem are presented. The idetification process includes log likelihood ratio for distance measure and dynamic programming for time normalization. To generate the data base for experiments, ten times. Experimental results show 99.4% of identification accuracy, incorrect identification were made when the speaker uses a dialect.

  • PDF

A Study of Alignment Tolerance's Definition and Test Method for Airborne Camera (항공기 탑재용 카메라 정렬오차 정의 및 시험방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun;Lee, Hang-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • Alignment tolerance for EO/IR airborne camera using common optic is an important factor in stabilization accuracy and geo-pointing accuracy. Before airborne camera is mounted on the aircraft, defining alignment tolerance and verification of it is essential in production as well as research and development. In this paper we establish basic concept on the definition and elements of alignment tolerance for airborne camera and propose how to measure each of those elements. Components and the measurement sequence of alignment tolerance are as follows: 1) tolerance of alignment between EO and IR LOS. 2) tolerance of sensor alignment. 3) tolerance of position reporting accuracy. 4) tolerance of mount alignment