• Title/Summary/Keyword: Accumulation, Resistance

Search Result 302, Processing Time 0.022 seconds

The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis

  • Choi, Kyung Mook
    • Endocrinology and Metabolism
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.

Hypoxia Induced Multidrug Resistance of Laryngeal Cancer Cells via Hypoxia-inducible Factor-1α

  • Li, Da-Wei;Dong, Pin;Wang, Fei;Chen, Xin-Wei;Xu, Cheng-Zhi;Zhou, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4853-4858
    • /
    • 2013
  • Objectives: To investigate whether hypoxia has an effect on regulation of multidrug resistance (MDR) to chemotherapeutic drugs in laryngeal carcinoma cells and explore the role of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Methods: Laryngeal cancer cells were cultured under normoxic and hypoxic conditions. The sensitivity of the cells to multiple drugs and levels of apoptosis induced by paclitaxel were determined by MTT assay and annexin-V/propidium iodide staining analysis, respectively. HIF-$1{\alpha}$ expression was blocked by RNA interference. The expression of HIF-$1{\alpha}$ gene was detected by real-time quantitative RT-PCR and Western blotting. The value of fluorescence intensity of intracellular adriamycin accumulation and retention in cells was evaluated by flow cytometry. Results: The sensitivity to multiple chemotherapy agents and induction of apoptosis by paclitaxel could be reduced by hypoxia (P<0.05). A the same time, the adriamycin releasing index of cells was increased (P<0.05). However, resistance acquisition subject to hypoxia in vitro was suppressed by down-regulating HIF-$1{\alpha}$ expression. Conclusion: HIF-$1{\alpha}$ could be considered as a key regulator for mediating hypoxia-induced MDR in laryngeal cancer cells via inhibition of drug-induced apoptosis and decrease in intracellular drug accumulation.

Effects of F/M ratio on the EPS production and fouling at MBR (MBR에서 F/M비가 EPS 생성 및 fouling에 미치는 영향)

  • Kim, Yun-Ji;Choi, Yun-Jeong;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.3
    • /
    • pp.197-204
    • /
    • 2021
  • In MBR, extracellular polymeric substance (EPS) is known as an important factor of fouling; soluble EPS (sEPS) affects internal contamination of membrane, and bound EPS (bEPS) affects the formation of the cake layer. The production of EPS changes according to the composition of influent, which affects fouling characteristics. Therefore, in this study, the effects of the F/M ratio on the sEPS concentration, bEPS content, and fouling were evaluated. The effects of F/M ratio on the amount and composition of EPS were confirmed by setting conditions that were very low or higher than the general F/M ratio of MBR, and the fouling occurrence characteristics were evaluated by filtration resistance distribution. As a result, it was found that the sEPS increased significantly with the increase of the F/M ratio. When the substrate was depleted, bEPS content decreased because bEPS was hydrolyzed into BAP and seemed to be used as a substrate. In contrast, when the substrate is sufficient, UAP (utilization-associated products) was rapidly generated in proportion with the consumption of the substrate. UAP has a relatively higher Protein/Carbohydrate ratio (P/C ratio) than BAP, and this means, it has a higher adhesive force to the membrane surface. As a result, UAP seems like causing fouling rather than BAP (biomass-associated products). Therefore, Rf (Resistance of internal contamination) increased rapidly with the increase of UAP, and Rc (Resistance of cake layer) increased with the accumulation of bEPS in proportion, and as a result, the fouling interval was shortened. According to this study, a high F/M ratio leads to an increment in UAP generation and accumulation of bEPS, and by these UAP and bEPS, membrane fouling is promoted.

Plasmid-Mediated Arsenical and Antimonial Resistance Determinants (ars) of Pseudomonas sp. KM20

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • Bacteria have evolved various types of resistance mechanism to toxic heavy metals, such as arsenic and antimony. An arsenical and antimonial resistant bacterium was isolated from a shallow creek draining a coal-mining area near Taebaek City, in Kangwon-Do, Korea. The isolated bacterium was identified and named as Pseudomonas sp. KM20 after biochemical and physiological studies were conducted. A plasmid was identified and its function was studied. Original cells harboring the plasmid were able to grow in the presence of 15 mM sodium arsenite, while the plasmid-cured (plasmidless) strain was sensitive to as little as 0.5 mM sodium arsenate. These results indicated that the plasmid of Pseudomonas sp. KM20 does indeed encode the arsenic resistance determinant. In growth experiments, prior exposure to 0.1 mM arsenate allowed immediate growth when they were challenged with 5 mM arsenate, 5 mM arsenite, or 0.1 mM antimonite. These results suggested that the arsenate, arsenite, and antimonite resistance determinants of Pseudomonas sp. KM20 plasmid were indeed inducible. When induced, plasmid-bearing resistance cells showed a decreased accumulation $of\;73^As$ and showed an enhanced efflux $of\;^73As$. These results suggested that plasmid encoded a transport system that extruded the toxic metalloids, resulting in the lowering of the intracellular concentration of toxic oxyanion. In a Southern blot study, hybridization with an E. coli R773 arsA-specific probe strongly suggested the absence of an arsA cistron in the plasmid-associated arsenical and antimonial resistance determinant of Pseudomonas sp. KM20.

Catch-up growth and catch-up fat in children born small for gestational age

  • Cho, Won Kyoung;Suh, Byung-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Infants born small for gestational age (SGA) are at increased risk of perinatal morbidity, persistent short stature, and metabolic alterations in later life. Recent studies have focused on the association between birth weight (BW) and later body composition. Some reports suggest that fetal nutrition, as reflected by BW, may have an inverse programing effect on abdominal adiposity later in life. This inverse association between BW and abdominal adiposity in adults may contribute to insulin resistance. Rapid weight gain during infancy in SGA children seemed to be associated with increased fat mass rather than lean mass. Early catch-up growth after SGA birth rather than SGA itself has been noted as a cardiovascular risk factor in later life. Children who are born SGA also have a predisposition to accumulation of fat mass, particularly intra-abdominal fat. It is not yet clear whether this predisposition is due to low BW itself, rapid postnatal catch-up growth, or a combination of both. In this report, we review the published literature on central fat accumulation and metabolic consequences of being SGA, as well as the currently popular research area of SGA, including growth aspects.

Modulation of P-glycoprotein Activity by Flavonoids in Human Uterine Sarcoma Cells (인체 자궁암 세포에서 플라보노이드에 의한 P-당단백질의 활성 조절)

  • Go, Eun-Jung;Chung, Soo-Yeon;Kim, Na-Hyung;Lee, Hwa-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.305-310
    • /
    • 2003
  • One of the possible mechanisms of multi-drug resistance found in cancer cells is the over-expression of P­glycoprotein (P-gp). Studies have shown that compounds in plants including vegetables and fruits not only have anticancer activities but may also modulate P-gp activity. The effect of flavonoids and organic isothiocyanate on P-gp activity was studied in human uterine sarcoma cell lines, MES-SA (sensitive) and MES-SA/DX5 (resistant) cells. The accumulation of daunomycin (DNM), a P-gp substrate, was approximately 10 times greater in the sensitive cell as compared to the resistant cells over the entire time course (up to 2 hours). The positive control, verapamil increased the two hour accumulation of DNM while quercetin decreased that of DNM in the resistant cells. 1-Naphtyl-isothiocyanate (NITC) showed no effect on the two hour accumulation of DNM. The $IC_{50}$ values for DNM in the resistant cells was about 20 times higher than that observed in the sensitive cells $(10.1{\pm}1.7\;{\mu}M\;vs.\;0.58{\pm}0.28\;{\mu}M)$. Verapamil reduced the $IC_{50}$ value for DNM whereas flavonoids (quercetin and fisetin) increased those for DNM in the resistant cells.

Ofloxacin Resistance Mechanism in PA150 and PA300-Clinical Isolates of Pseudomonas aeruginosa in Korea

  • Lee, Soon-Deuk;Lee, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.671-676
    • /
    • 1998
  • Five hundred and seventy clinical strains of Pseudomonas aeruginosa were isolated from August 1993 to August 1994 in Korea and screened for their resistance to ciprofloxacin, norfloxacin, and ofloxacin. Among these, two P. aeruginosa strains (PA150 and PA300) were selected based on their strong resistance (MICs > 50mcg/ml) to all three quinolones. The susceptible strain as well as two resistant strains had proton gradient-dependent efflux system. Efflux system in PA300 showed different specificities to ofloxacin and ciprofloxacin while PA150 had less permeability for ofloxacin. Ofloxacin had a less inhibitory action on DNA synthesis in permeabilized cells of PA150 and PA300 than 1771M. When quinolone resistance determining region (QRDR) in gyrA was sequenced, PA300 had one missense mutation, Asn 116Tyr, which was newly reported in this work. The results showed that PA150 became ofloxacin resistant by reduced ofloxacin accumulation due to the existence of efflux system and low permeability, while resistance of PA300 was due to the efflux system and a mutation in QRDR of gyrA -the target site of quinolone.

  • PDF

Role of Riboflavin in Induced Resistance against Fusarium Wilt and Charcoal Rot Diseases of Chickpea

  • Saikia Ratul;Yadav Mukesh;Varghese Saju;Singh Bhim Pratap;Gogoi Dip K;Kumar Rakesh;Arora Dilip K
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.339-347
    • /
    • 2006
  • Riboflavin caused induction of systemic resistance in chickpea against Fusarium wilt and charcoal rot diseases. The dose effect of 0.01 to 20 mM riboflavin showed that 1.0 mM concentration was sufficient for maximum induction of resistance; higher concentration did not increase the effect. At this concentration, riboflavin neither caused cell death of the host plant nor directly affected the pathogen's growth. In time course observation, it was observed that riboflavin treated chickpea plants were inducing resistance 2 days after treatment and reached its maximum level from 5 to 7 days and then decreased. Riboflavin had no effect on salicylic acid(SA) levels in chickpea, however, riboflavin induced plants found accumulation of phenols and a greater activities of phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) protein, peroxidase was observed in induced plant than the control. Riboflavin pre-treated plants challenged with the pathogens exhibited maximum activity of the peroxidases 4 days after treatment. Molecular weight of the purified peroxidase was 42 kDa. From these studies we demonstrated that riboflavin induced resistance is PR-protein mediated but is independent of salicylic acid.

Inactivation of mutS Leads to a Multiple-Drug Resistance in Pseudomonas putida ATCC12633

  • KIM JEONG-NAM;LEE SUNG-JAE;LEE HO-SA;RHIE HO-GUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1214-1220
    • /
    • 2005
  • Decreased porin-mediated outer membrane penetration of hydrophilic antibiotics is a common mechanism of antibiotic resistance in Gram-negative bacteria. This study was undertaken to determine whether a null mutation in Pseudomonas putida would suppress porin synthesis, and therefore reduce the susceptibility of the organism to streptomycin, norfloxacin, and tetracycline. Inverse PCR amplification and double-stranded DNA sequencing were used to identify chromosomal genes carrying TnphoA'-1 inserts. Genome database available was used to identify putative homologue genes, one of which encodes protein with homology to domains of the MutS of P. putida, suggesting a crucial role in the multidrug resistance. Increased resistance to streptomycin, norfloxacin, and tetracycline might be due to accumulation of compensatory mutations. Either no growth or slow growth was observed in P. putida KH1027 when grown in minimal medium containing gluconate, glucose, or citrate; however, it is not clear whether the growth patterns contributed to the multidrug resistance.