• Title/Summary/Keyword: Accumulation, Elimination, Interaction

Search Result 3, Processing Time 0.016 seconds

Heavy Metal Interactions during Accumulation and Elimination of Cadmium and Copper in the Liver of Juvenile Flounder, Paralichthys olivaceus

  • Kim Seong-Gil;Kim Sang-Gyu;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.295-301
    • /
    • 2002
  • Experiments were carried out to investigate the effects of metal interaction on the accumulation and elimination of Cd and Cu in the liver of flounder, Paralichthys olivaceus, exposed to sub-chronic Cd (0, 5, 10, 50, 100 ${\mu}g/L$)/Cu $(10 {\mu}g/L)$ mixture. Cd exposure resulted in an increased Cd accumulation in the liver of flounder for exposure periods and concentration, and Cd accumulation increased linearly with exposure time. Cu accumulation profiles were similar to those of Cd. Cd concentration in the liver significantly decreased at the 10th depuration period and elimination rate was $66.20\%,\;86.22\%$ in 50 and $100 {\mu}g/L$at the end of depuration periods, respectively. Although, Cu elimination was similar to Cd elimination phase, Cd elimination rate was higher than that of Cu. Co-relationship of Cd and Cu have a positive correlation coefficient r=0.8620 (P<0.001) and support the strong relationship between Cd and Cu accumulation. As increase with the Cd exposure concentration, there were significant (P<0.001) differences between Cd and Cu accumulation.

Biological Removal of a VOC Mixture in a Two-stage Bioreactor (이단미생물반응조에서 혼합 VOCs의 생분해 특성)

  • Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.758-766
    • /
    • 2006
  • A two-stage bioreactor, which consists of a biotrickling filter module and a biofilter module in series, was investigated for the enhanced treatment of a VOC mixture, toluene and methyl ethyl ketone (MEK). Throughout the experiments, the overall inlet loading rate was maintained at approximately $43g/m^3/hr$, but the inlet ratios of the VOCs were modified. The experimental results showed that the different ratios of the VOC mixture resulted in changes of overall removal efficiencies, elimination capacities (ECs) and microbial accumulation on the surface of each packing material. The ratio of inlet toluene to MEK at 50 : 150 was found to be most effective in terms of the overall removal efficiency, because, at this condition, MEK (i.e., the hydrophilic compound) was mostly removed in the biotrickling filter module and the following biofilter module was used to remove toluene. It was also found that when the inlet loading rate of the VOC mixture was serially increased stepwise within short-term periods, the ECs for toluene dropped significantly but the ECs for MEK increased at the ratio of the VOC mixture. These results implied that substrate interaction and/or substrate preferable utilization might have an effect on the biological removal of each compound in the two-stage bioreactor; therefore, the bioreactor should be operated in the condition where the substrate interaction could be minimized in order to maximize overall performance of the two-stage bioreactor.

Pharmacokinetic Interaction between Nisoldipine and Repaglinide in Rats

  • Choi, In;Choi, Dong-Hyun;Yeum, Cheul-Ho;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2011
  • The purpose of this study was to investigate the effects of nisoldipine on the pharmacokinetics of repaglinide in rats. The effect of nisoldipine on cytochrome P450 (CYP) 3A4 activity and P-glycoprotein (P-gp) were evaluated. The pharmacokinetic parameters of repaglinide were also determined in rats after oral (0.5 $mg{\cdot}kg^{-1}$) and intravenous (0.2 $mg{\cdot}kg^{-1}$) administration of repaglinide to rats without or with nisoldipine (0.3 and 1.0 $mg{\cdot}kg^{-1}$). Nisoldipine inhibited CYP3A4 enzyme activity with a 50% inhibition concentration of 5.5 ${\mu}M$. In addition, nisoldipine significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, nisoldipine significantly increased the $AUC_{0-{\infty}}$ and the $C_{max}$ of repaglinide by 46.9% and 24.9%, respectively. Nisoldipine also increased the absolute bioavailability (A.B.) of repaglinide by 47.0% compared to the oral control group. Moreover, the relative bioavailability (R.B.) of repaglinide was 1.16- to 1.47-fold greater than that of the control group. Nisoldipine enhanced the oral bioavailability of repaglinide, which may be attributable to the inhibition of the CYP3A4-mediated metabolism in the small intestine and/or in the liver and to inhibition of P-gp in the small intestine rather than to reduction of renal elimination of repaglinide by nisoldipine. The increase in the oral bioavailability of repaglinide should be taken into consideration of potential drug interactions when co-administering repaglinide and nisoldipine.