• Title/Summary/Keyword: Accumulated Sliding Distance

Search Result 3, Processing Time 0.017 seconds

Numerical Analysis of Accumulated Sliding Distance of Pre-Stressed Concrete (PSC) Bridge Bearing for High-Speed Railway for Ubiquitous Technology (유비쿼터스 기술을 위한 고속철도상 Pre-Stressed Concrete(PSC) 교량받침의 누적수평이동거리에 관한 수치해석)

  • Oh, Soontaek;Lee, Dongjun;Lee, Hongjoo;Jeong, Shinhyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Numerical analysis of PSC box bridge bearings for high speed KTX train vehicles has been carried out as a virtual simulation for Ubiquitous Technology. Improved numerical models of bridge, vehicle and interaction between bridge and train are considered, where bending and torsional modes are provided, whereas the exist UIC code is applied by the simplified HL loading. Dynamic and static analysed results are compared to get Dynamic Amplification Factors (D. A. F.) for maximum deflections and bending stresses up to running speed of 500 km/h. Equation from the regression analysis for the D. A. F. is presented. Sliding distance of the bearings for various KTX running speeds is compared with maximum and accumulated distances by the dynamic behaviors of PSC box bridge. Dynamic and static simulated sliding distances of the bearings according to the KTX running speed are proved as a major parameter in spite of the specifications of AASHTO and EN1337-2 focused on the distance by temperature variations.

A Long-Term Friction Test of Bridge Bearings Considering Running Speed of Next Generation Train (차세대 고속철 주행속도를 대비한 교량받침의 장기마찰시험법)

  • Oh, Soon-Taek;Lee, Dong-Jun;Jun, Sung-Min;Jeong, Shin-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.34-39
    • /
    • 2016
  • Structural behaviour of PSC box bridge, on which KTX train runs, is analysed up to 500 km/h speed considering 12 stages track irregularity and interaction between bridge and vehicle. To evaluate wheel forces and rotations of vehicle, lateral wheel forces, derail factor and offload factor calculated on the track combining the bridge and 170 m normal track are compared with existing allowed limits. Maximum longitudinal displacement and accumulated sliding distance of the brige bearings for simply supported and 2 span continuous PSC bridges are presented by each running speeds. Long-term friction tests based on EN-1337-2 are conducted between PTFE and DP-mate plates. Finally, the long-term friction tests are proposed to consider the increasing speed of next generation high-speed train.

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.