• Title/Summary/Keyword: Accumulated Energy

Search Result 431, Processing Time 0.022 seconds

Evaluation of Liquefiable Soils by Energy Concept (에너지 개념에 기초한 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Sun, Yu-Jung;Park, Keun-Bo;Park, Seong-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.590-599
    • /
    • 2006
  • In this study, Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal loading, increasing wedge loading, and real earthquake loading were investigated focusing on the dissipated energy. From the results of cyclic triaxial test, liquefaction resistance strength was calculated by the concept of energy according to the type of input loading. Liquefaction resistance strength was expressed in accumulated dissipated energy calculated from stress-strain curve(hysteresis loop). The dissipated energy according to loading type was compared and the energy-based evaluation was proposed. The procedures are presented in terms of normalized energy demand(NED), normalized energy capacity(NEC), and factor of safely, where NED is the load imparted to the soil by the loading(both amplitude and duration), NEC is the demand required to induce liquefaction, and factor of safely is defined as the ratio of NEC and NED.

  • PDF

The Development of the Solar-Meteorological Resources Map based on Satellite data on Korean Peninsula (위성자료기반의 한반도 태양기상자원지도 개발)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.342-347
    • /
    • 2011
  • Solar energy is attenuated by absorbing gases (ozone, aerosol, water vapour and mixed gas) and cloud in the atmosphere. And these are measured with solar instruments (pyranometer, phyheliometer). However, solar energy is insufficient to represent detailed energy distribution, because the distributions of instruments are limited on spatial. If input data of solar radiation model is accurate, the solar energy reaches at the surface can be calculated accurately. Recently a variety of satellite measurements are available to TERA/AQUA (MODIS), AURA (OMI) and geostationary satellites (GMS-5, GOES-9, MTSAT-1R, MTSAT-2 and COMS). Input data of solar radiation model can be used aerosols and surface albedo of MODIS, total ozone amount of OMI and cloud fraction of meteorological geostationary satellite. The solar energy reaches to the surface is calculated hourly by solar radiation model and those are accumulated monthly and annual. And these results are verified the spatial distribution and validated with ground observations.

  • PDF

The Study about The Minimum Ignition Energy for Electrostatic Discharge in The Gasoline-air Mixture (정전기 방전에 의한 개소린-공기혼합기체의 최소착화에너지에 관한 연구)

  • 황명환;이덕출
    • Fire Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.3-9
    • /
    • 1996
  • Electrostatic charge is generated in large scale or high speed processes dealing with materials with large resistance, or under complicated condition. Fire and explosion often occur due to electrostatic charge accumulated in flammable gases, vapor, liquids and powder. It is usually very difficult to verify the cause of accidents as well as the prevention. In this study, it is shown that the needle electrode needs the electrode gap from 1.8mm to 3.8mm, sphere electrode and plate electrodes need the electrode gap of 1.9mmfor the minimum ignition energy. The sphere electrode and the plate electrode requires 12.8mJ and 3.2mJ of minimum ignition energy respectively with the electrode gap of 1.1mm. The ignition voltage rises to very large value as the ground resistance increases.

  • PDF

An Experimental Study on Sea Water Freezing Behavior in a Cooled Circular Tube (원관내의 해수동결거동에 관한 실험적연구)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.680-686
    • /
    • 1998
  • In the adoption of a desalination system the most important factor is the cost of fresh water pro-duction. In general LNG is stored in a tank as a liquid state below $-162^{\circ}C$ When it is serviced however the LNG absorbs energy from a heat source and it is transformed to a high pressure gaseous state. During this process a huge amount of cold energy accumulated in cooling LNG is wasted. This wasted cold energycan be utilized to produce fresh water by using a sea water freez-ing desalination system. in order to develop a sea water freezing desalination system and to estab-lish its design technique qualitative and quantitative data regarding the freezing behavior of sea water is required in advance. The goals of this study are to reveal the freezing mechanisms of sea water in a cooled circular tube to measure the freezing rate and to investigate the freezing heat-transfer characteristics. The experimental results provide a general understanding of sea water freezing behavior in a cooled circular tube.

  • PDF

Effects of Phase Change Material Floor Heating Systems using Direct Solar Gain on Cooling Load (직달일사를 이용한 잠열축열식 바닥난방 시스템이 냉방부하에 미치는 영향에 대한 검토)

  • Kim, Soo-Kyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • In this research, the effect of a heating system, which is powered by direct solar energy accumulated in phase change material (PCM) as heat storage material installed on the floor surface, on the cooling load was studied. Cooling load of a test building designed for this research was measured with fan coil unit and factors affecting it were also estimated. Experiments were performed with and without PCM installed on the building floor to understand the effect of the PCM on the cooling load. Additionally, to confirm the experiments results, the prediction calculation formula by average outside temperature and integrated solar radiation was composed using multivariate regression model. The results suggested that the heating system with PCM on the floor surface has the potential to shift electric power peak by radiating heat, stored during the daytime in it, at night, not increasing the total cooling load much.

A Fundamental Study on Sea Water Freezing Behavior in a Rectangular Vessel Cooled from Below (구형용기의 하부면 냉각에 의한 해수 동결거동의 기초적 연구)

  • 김명준;길병래;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.564-570
    • /
    • 1997
  • The most important factor for the desalination system is the fresh water production cost dependent upon the possible energy source which should be obtained easily and with low price. Recently in Korea the demand of LNG, as a cheap and clean energy which does not cause an environmental problem, has sharply been increased. In general, LNG is storaged in a tank as a liquid state below -162 'C. When it is serviced, however, the LNG absorbs energy from a heating source and transforms to the gaseous state with high pressure. During this process a huge amount of cold energy accumulated in LNG is wasted. This waste cold energy can be utilized for producing fresh water from sea water using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique, a qualitative and quantitative data regarding the freezing behavior of sea water is needed in advance. The goal of this study, therefore, are to reveal the freezing mechanism of sea water, to measure the freezing rate, and to investigate the freezing heat-transfer characteristics. The experimental results help to provide a general understanding of the sea water freezing behavior in a Rectangular vessel cooled from below.

  • PDF

AN EXPERIMENTAL STUDY ON AN ELECTROCHEMICAL REDUCTION OF AN OXIDE MIXTURE IN THE ADVANCED SPENT-FUEL CONDITIONING PROCESS

  • Jeong, Sang-Mun;Park, Byung-Heung;Hur, Jin-Mok;Seo, Chung-Seok;Lee, Han-Soo;Song, Kee-Chan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.183-192
    • /
    • 2010
  • An electrochemical reduction of a mixture of metal oxides was conducted in a LiCl molten salt containing 3 wt% $Li_2O$ at $650^{\circ}C$. The oxide reduction was carried out by applying a current to an electrolysis cell, and the $Li_2O$ concentration was analyzed during each run. The concentration of $Li_2O$ in the electrolyte bulk phase gradually decreases according to Faraday's law due to a slow diffusion of the $O^{2-}$ ions. A hindrance effect of the unreduced metal oxides was observed for the reduction of the uranium oxide. Cs, Sr, and Ba of high heat-load fission products were diffused into and accumulated in the salt phase as predicted with thermodynamic consideration.

Patents Map on the Desalination Technology Using Solar Energy (태양에너지를 이용한 해수담수화 기술관련 특허 분석)

  • Im, Eun-Jung;Kim, Sung-Hyun
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Patent analysis is the extracting knowledge which is needed for the company's research and development strategy through accumulated worldwide patent database. In order to set the future direction corresponding technology which is scheduled to be developed, the technology trends and deployment processes are identified by analyzing results of present patent applications. The patent analysis provides the required results for analyzing present patent applications. In this paper, technology classification for related patent analysis methods and system, and patent analysis for desalination technology using solar energy development was carried out as well. The patents in Korea, USA, Japan, China, and Europe were searched. The technology trend desalination technology using solar energy was analyzed based on patent application year, countries, main applications, and each technologies. The application status of desalination patents showed a tendency to increase slightly. It was found that the number of patent for applied desalination was USA patent 21.0%, Japan patent 27.0%, China 24.8%, EU 2.7% and Korea patent 24.5%, respectively.

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.