Objectives: This study aimed to measure the awareness and needs for intellectual property (IP) education among university students majoring in health-related fields to inform the development of future IP education curricula. Methods: The study was conducted through an online survey from January 5 to 26, 2024, targeting students from the health-related departments (Department of Physical Therapy, Health Administration, Clinical Laboratory Science, and Dental Hygiene) at Dankook University located in Cheonan City, Chungcheongnam-do. Results: A total of 151 students participated in the survey. Among the respondents, 84.8% were women, and the largest groups of respondents were from the Health Administration and Dental Hygiene departments, each accounting for 32.5%. Only 13.9% of the respondents had taken courses related to IP, and 22.5% had related activity experience. The overall average importance score of IP education was 3.88 (±0.80), and the overall average need score was 3.78 (±0.80). An Importance-Performance Analysis (IPA) Matrix analysis revealed that 13 topics fell into the first quadrant (high importance, high need), one topic into the second quadrant (low importance, high need), 18 topics into the third quadrant (low importance, low need), and four topics into the fourth quadrant (high importance, low need). The educational topics identified as first quadrant include 'Securing patent rights', 'Requirements for patent registration', 'Effects and contents of patent rights', 'Patent infringement and remedies', and 'Effects and contents of copyrights'. Conclusions: Future IP education programs should develop innovative educational content and methods that consider both the importance and needs to increase students' interest and engagement.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.12
no.1
/
pp.33-46
/
2017
In Korea, small and medium sized domestic enterprises (SMEs) play an pivotal role in the national economy, accounting for 99.8% of all enterprises, 87.9% of total employment, and 48.3% of production. and SMEs were driving a real force of the development of national economy in many respects such as innovation, job creation, industrial diversity, balanced regional development. Despite their crucial role in the national development, most of SMEs suffer from a lack of R&D capabilities and equipments as well as funding capacity. Government-Supported Research Institute (GRI) can provide SMEs with valuable supplementary technological knowledges and help them build technological capacities. so, In order to effectively support SMEs, government and GRI must be a priority to know about the factors influencing the performance related to technology transfer and technological collaborations. The paper analyzes the effects of Korean IT SMEs Venture external collaborations and technology transfer on their performances, according to their collaboration activities and technology transfer experiences. The results show that there was a significant difference between '3~5times' of technology transfer experience and 'zero technology transfer experience' in the case of technology transfer experience. In case of technological collaboration type, there was a significant difference between 'R&D manpower' and 'enhancement of technological capabilities including core technologies'. The results show that the effectiveness of technology transfer of Korean IT SMEs Venture depends on experiences, types of collaboration activities. so the results of this research will be useful for Government-Supported research institute (GRI)' policy makers when establishing technology commercialization support policies and strategic planning of small and medium sized domestic enterprises.
In China, different from the private enterprises or the locally-administered state enterprises, central state-owned enterprises generally spread over cornerstone industry which is greatly influenced by the public policy, which results in the objective existence of government influence in their productive activities. As the strategic resource, listed companies controlled by central state-owned enterprises, mostly distributed in the lifeblood and security of key industries. Therefore, listed companies controlled by central state-owned enterprises' governance efficiency play an important role in optimal allocation of state-owned assets, improve capital operation, improve the return on capital, and maintain state-owned assets safety. As the immune systems of national governance, the government audit strengthen the supervision of listed companies controlled by central state-owned enterprises in case of the loss of state-owned assets and significant risk events occur, to ensure that the value of state-owned assets. As an important component of national governance, government audit produced in entrusted with the economic responsibility of public relationship. Government audit can play an important role in maintaining financial security and corruption, and also improve listed company's accounting stability and transparency. While government audit can improve governance efficiency and maintain state-owned assets safety, present literature is scarce. Under the corporate governance theory and the economical responsibility theory, the thesis select data from 2010-2017 to verify the relationship between government audit and listed companies controlled by central state-owned enterprises' corporate performance. Results show that listed companies controlled by central state-owned enterprises are more likely to be audited by government of poor performance. Results also show that the government audit will have a promoting effect on listed companies controlled by central state-owned enterprises, and through to the improvement of the governance efficiency will enhance its companies' value. The results show that China's government audit has appealing role in accomplishing central state-owned enterprises to realize the business objectives and in promoting the governance efficiency.
Research in dam inflow prediction has actively explored the utilization of data-driven machine learning and deep learning (ML&DL) tools across diverse domains. Enhancing not just the inherent model performance but also accounting for model characteristics and preprocessing data are crucial elements for precise dam inflow prediction. Particularly, existing rainfall data, derived from snowfall amounts through heating facilities, introduces distortions in the correlation between snow accumulation and rainfall, especially in dam basins influenced by snow accumulation, such as Soyang Dam. This study focuses on the preprocessing of rainfall data essential for the application of ML&DL models in predicting dam inflow in basins affected by snow accumulation. This is vital to address phenomena like reduced outflow during winter due to low snowfall and increased outflow during spring despite minimal or no rain, both of which are physical occurrences. Three machine learning models (SVM, RF, LGBM) and two deep learning models (LSTM, TCN) were built by combining rainfall and inflow series. With optimal hyperparameter tuning, the appropriate model was selected, resulting in a high level of predictive performance with NSE ranging from 0.842 to 0.894. Moreover, to generate rainfall correction data considering snow accumulation, a simulated snow accumulation algorithm was developed. Applying this correction to machine learning and deep learning models yielded NSE values ranging from 0.841 to 0.896, indicating a similarly high level of predictive performance compared to the pre-snow accumulation application. Notably, during the snow accumulation period, adjusting rainfall during the training phase was observed to lead to a more accurate simulation of observed inflow when predicted. This underscores the importance of thoughtful data preprocessing, taking into account physical factors such as snowfall and snowmelt, in constructing data models.
Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.8
no.4
/
pp.95-109
/
2013
The practices and processes of HRM (Human Resource Management) for university faculty in Korea depend heavily on assessment of research and teaching rather than the UIC (University-Industry Cooperation) performance. In this regard, HRM of Korean universities is said to be far distant from UIC. Although policy initiatives by the Korean government, notably the MoE (Ministry of Education) have implemented in most universities, the desirable level of UIC could not be achieved yet. Moreover, the very notion of 'university' in Korea is much more to do with 'pure' education and research institution than with 'applied' and 'vocational' purpose. Considering upon HRM practices and organizational culture, for enhancing UIC in Korea, the government's policy should be linked to alter deep-rooted university culture. So the aims of the research are to describe the current state of HRM in Korean and foreign universities; to find out the critical factors of UIC in Korean universities; to analyze the gaps between university research and industrial commercialization based on a conceptual framework, the 'valley of the death'; and to recommend HRM policies fostering UIC for the MoE. For achieving these objectives, we deploy multiple methodologies, namely, in-depth interview, literature survey, and statistical data analysis with regard to UIC. Analyzing the data we have collected, the present research sheds light on all aspects of HRM processes and UICs. And the main policy implication is restricted to the Korean universities, even if we have collected and analyzed foreign universities, notably universities in the USA. The research findings are mainly two folds. Firstly, the HRM practices among Korean universities are very similar due to the legally institutionalized framework and the government's regulations. Secondly, the difficulties of UIC can be explained by notion of the 'valley of death' ways in which both parties of university and industry are looking for different purposes and directions. In order to overcome the gap in the valley of death, the HRM policy is better to be considered as leverage. Finally, the policy recommendations are as follows. Firstly, various kinds of UIC programs are able to enhance the performances of not only UIC, but also education and research outcome. Secondly, fostering organizational climate and culture for UIC, employing various UIC programs, and hiring industry-experienced faculty are all very important for enhancing the high performance of university. We recommend the HRM policies fostering UIC by means of indirect way rather than funding directly for university. The HRM policy of indirect support is more likely to have long-term effectiveness while the government's direct intervention to UIC will have likely short-term effectiveness as the previous policy initiatives have shown. The MEST's policy means of indirect support might vary from financial incentives to the universities practicing HRM for UIC voluntarily, to information disclosure for UIC. The benefits of the present research can be found in suggesting HRM policy for UIC, highlighting the significance of industry-experienced faculty for UIC, and providing statistical analysis and evidences of UIC in Korean universities.
The genetic parameters used in National Hanwoo Genetic Evaluation(NHGE) were needed to be monitored and updated periodically for accounting any possible changes in population parameters due to selection and environmental changes. Genetic parameters were estimated with single and two-trait models with MTDFREML package using 2,791 carcass records of steers collected from Hanwoo Progeny Test Program(HPTP). Single and two-trait models gave similar parameter estimates for all traits. The heritability estimates from single and two-trait models for carcass weight(CW), dressing percentage(DP), eye muscle area(EMA), back fat thickness(BFT) and marbling score(MS) were 0.30, 0.30, 0.37, 0.44 and 0.44, respectively. The heritability estimates for all the traits except BFT were slightly lower than those used in NHGE but seemed to be within the acceptable ranges. However, further monitoring is needed because the data might not have fully reflected the changes such as carcass grading standards in performance testing program. In order to shift statistical model of NHGE from single trait model to multiple-trait model, the genetic correlations between carcass traits were estimated with pairwise two-trait models. The genetic correlation coefficients between CW and DP, between CW and EMA, between CW and BFT and between CW and MS were 0.44, 0.63, 0.17 and 0.06, respectively. Those between DP and EMA, between DP and BFT and between DP and MS were 0.29, 0.40 and 0.20. Those between EMA and BFT and between EMA and MS were -0.24 and 0.15, respectively. The genetic correlation coefficient between BFT and MS was 0.03.
Recently, the rapid progress of a number of standardized web technologies and the proliferation of web users in the world bring an explosive increase of producing and consuming information documents on the web. In addition, most companies have produced, shared, and managed a huge number of information documents that are needed to perform their businesses. They also have discretionally raked, stored and managed a number of web documents published on the web for their business. Along with this increase of information documents that should be managed in the companies, the need of a solution to locate information documents more accurately among a huge number of information sources have increased. In order to satisfy the need of accurate search, the market size of search engine solution market is becoming increasingly expended. The most important functionality among much functionality provided by search engine is to locate accurate information documents from a huge information sources. The major metric to evaluate the accuracy of search engine is relevance that consists of two measures, precision and recall. Precision is thought of as a measure of exactness, that is, what percentage of information considered as true answer are actually such, whereas recall is a measure of completeness, that is, what percentage of true answer are retrieved as such. These two measures can be used differently according to the applied domain. If we need to exhaustively search information such as patent documents and research papers, it is better to increase the recall. On the other hand, when the amount of information is small scale, it is better to increase precision. Most of existing web search engines typically uses a keyword search method that returns web documents including keywords which correspond to search words entered by a user. This method has a virtue of locating all web documents quickly, even though many search words are inputted. However, this method has a fundamental imitation of not considering search intention of a user, thereby retrieving irrelevant results as well as relevant ones. Thus, it takes additional time and effort to set relevant ones out from all results returned by a search engine. That is, keyword search method can increase recall, while it is difficult to locate web documents which a user actually want to find because it does not provide a means of understanding the intention of a user and reflecting it to a progress of searching information. Thus, this research suggests a new method of combining ontology-based search solution with core search functionalities provided by existing search engine solutions. The method enables a search engine to provide optimal search results by inferenceing the search intention of a user. To that end, we build an ontology which contains concepts and relationships among them in a specific domain. The ontology is used to inference synonyms of a set of search keywords inputted by a user, thereby making the search intention of the user reflected into the progress of searching information more actively compared to existing search engines. Based on the proposed method we implement a prototype search system and test the system in the patent domain where we experiment on searching relevant documents associated with a patent. The experiment shows that our system increases the both recall and precision in accuracy and augments the search productivity by using improved user interface that enables a user to interact with our search system effectively. In the future research, we will study a means of validating the better performance of our prototype system by comparing other search engine solution and will extend the applied domain into other domains for searching information such as portal.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.9
no.2
/
pp.1-13
/
2014
This study is preliminary founding start-ups of restaurant entrepreneurs to study the characteristics of management in order to provide useful information was studied. Survey period is from 2013 March 15 to August 31. About the nature of the preparation and establishment founder findings restaurant entrepreneurs of Western Gyeongnam area were most often in the form of an independent establishment has been compiled, work experience and other industries operating experience was more than restaurant entrepreneurs of operating experience. Hypothesis Testing in accordance with results of this study are as follows. First, the 50 founders than 30 founders quickly when the customer complaint or that service, order food and non-food note is issued after obtaining the order or that provide food, no customer is often inconvenient check the sharing services, such as personnel activities were devoting a lot of effort. Second, the re-startups restaurant entrepreneurs than new startups restaurant entrepreneurs was founded after the founder of career-related customer complaints about food more active coping was, and re-startups restaurant entrepreneurs by the founder other than business founded by the founder of the food-related customer complaints more aggressively for coping, respectively. Third, restaurant entrepreneurs of the store operations management has integrity, words and actions match, such as the degree of belief in the promise of reliability and the possibility of failure, which means the degree of recognition and response efforts are having an impact deal. Fourth, restaurant of food service management services and after-sales service has impact on the founder of the self-efficacy and self-efficacy of pre-service features and reliability founder affecting. Fifth, the revenue of the restaurant for dealing with customer complaints management includes efforts are having an impact. Sixth, restaurant founder of reliability and customer care has influenced the self-efficacy. Seventh, management of operational management activities have a positive impact on business performance are.
Research on technical efficiency, an important dimension of market performance, had received little attention until recently by most industrial organization empiricists, the reason being that traditional microeconomic theory simply assumed away any form of inefficiency in production. Recently, however, an increasing number of research efforts have been conducted to answer questions such as: To what extent do technical ineffciencies exist in the production activities of firms and plants? What are the factors accounting for the level of inefficiency found and those explaining the interindustry difference in technical inefficiency? Are there any significant international differences in the levels of technical efficiency and, if so, how can we reconcile these results with the observed pattern of international trade, etc? As the first in a series of studies on the technical efficiency of Korea's manufacturing industries, this paper attempts to answer some of these questions. Since the estimation of technical efficiency requires the use of plant-level data for each of the five-digit KSIC industries available from the Census of Manufactures, one may consture the findings of this paper as empirical evidence of technical efficiency in Korea's manufacturing industries at the most disaggregated level. We start by clarifying the relationship among the various concepts of efficiency-allocative effciency, factor-price efficiency, technical efficiency, Leibenstein's X-efficiency, and scale efficiency. It then becomes clear that unless certain ceteris paribus assumptions are satisfied, our estimates of technical inefficiency are in fact related to factor price inefficiency as well. The empirical model employed is, what is called, a stochastic frontier production function which divides the stochastic term into two different components-one with a symmetric distribution for pure white noise and the other for technical inefficiency with an asymmetric distribution. A translog production function is assumed for the functional relationship between inputs and output, and was estimated by the corrected ordinary least squares method. The second and third sample moments of the regression residuals are then used to yield estimates of four different types of measures for technical (in) efficiency. The entire range of manufacturing industries can be divided into two groups, depending on whether or not the distribution of estimated regression residuals allows a successful estimation of technical efficiency. The regression equation employing value added as the dependent variable gives a greater number of "successful" industries than the one using gross output. The correlation among estimates of the different measures of efficiency appears to be high, while the estimates of efficiency based on different regression equations seem almost uncorrelated. Thus, in the subsequent analysis of the determinants of interindustry variations in technical efficiency, the choice of the regression equation in the previous stage will affect the outcome significantly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.