• Title/Summary/Keyword: Accident case studies

Search Result 179, Processing Time 0.023 seconds

An Analysis of Individual and Social Factors Affecting Occupational Accidents

  • Barkhordari, Amir;Malmir, Behnam;Malakoutikhah, Mahdi
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.205-212
    • /
    • 2019
  • Background: Workforce health is one of the primary and most challenging issues, particularly in industrialized countries. This article aims at modeling the major factors affecting accidents in the workplace, including general health, work-family conflict, effort-reward imbalance, and internal and external locus of control. Methods: A cross-sectional study was conducted in Esfahan Steel Company in Iran. A total of 450 participants were divided into two groups-control and case-and the questionnaires were distributed among them. Data were collected through a 7-part questionnaire. Finally, the results were analyzed using SPSS 22.0 and Amos software. Results: All the studied variables had a significant relationship with the accident proneness. In the case group, general health with a coefficient of -0.37, worke-family conflict with 0.10, effort-reward imbalance with 0.10, internal locus of control with -0.07, and external locus of control with 0.40 had a direct effect on occupational stress. Occupational stress also had a positive direct effect on accident proneness with a coefficient of 0.47. In addition, fitness indices of control group showed general health (-0.35), worke-family conflict (0.36), effort-reward imbalance (0.13), internal locus of control (-0.15), and external locus of control (0.12) have a direct effect on occupational stress. Besides, occupational stress with a coefficient of 0.09 had a direct effect on accident proneness. Conclusion: It can be concluded that although previous studies and the present study showed the effect of stress on accident and accident proneness, some hidden and external factors such as work-family conflict, effort-reward imbalance, and external locus of control that affect stress should also be considered. It helps industries face less occupational stress and, consequently, less occurrence rates of accidents.

The Process of Archiving Sewol Accident and its Meaning (세월호 사건 기록화의 과정과 의의)

  • Ahn, Byung Woo
    • The Korean Journal of Archival Studies
    • /
    • no.44
    • /
    • pp.217-241
    • /
    • 2015
  • The sinking of the Sewol ferry has not only induced an intense conflict in Korean society but also been developed into a sociopolitical issue. This paper divides this accident into five stages and examines the records produced at each stage. The Sewolho Citizen Archive Network and the Ansan Citizen Record Committee began the archiving of Sewol and created the 416 Archives. The records of Sewol are social and political records that hold envidencial and historical value. They can be used to rebuild and recover the wounded community as well as to investigate the truth behind the case. Accident archiving collects materials different to the ones which public archiving does, allowing people to view the incident from a different standpoint. It is also characterized as an archiving of the current issue, social movement and regional community. Accident archiving is a method which ensures credibility and impartiality in memory. In light of Sewol archives, accident archiving can contribute to form mature democracy.

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.

ESTABLISHMENT OF A SEVERE ACCIDENT MITIGATION STRATEGY FOR AN SBO AT WOLSONG UNIT 1 NUCLEAR POWER PLANT

  • Kim, Sungmin;Kim, Dongha
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • During a station blackout (SBO), the initiating event is a loss of Class IV and Class III power, causing the loss of the pumps, used in systems such as the primary heat transporting system (PHTS), moderator cooling, shield cooling, steam generator feed water, and re-circulating cooling water. The reference case of the SBO case does not credit any of these active heat sinks, but only relies on the passive heat sinks, particularly the initial water inventories of the PHTS, moderator, steam generator secondary side, end shields, and reactor vault. The reference analysis is followed by a series of sensitivity cases assuming certain system availabilities, in order to assess their mitigating effects. This paper also establishes the strategies to mitigate SBO accidents. Current studies and strategies use the computer code of the Integrated Severe Accident Analysis Code (ISAAC) for Wolsong plants. The analysis results demonstrate that appropriate strategies to mitigate SBO accidents are established and, in addition, the symptoms of the SBO processes are understood.

Investigation of Traffic Accident using Skid Mark (스키드마크를 이용한 교통사고 조사)

  • Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.113-120
    • /
    • 2010
  • In case the traffic accident occurs, skid mark is very important factor to calculate the car speed. Especially, for the purpose of objective and scientific inspection, traffic accidents should be appraised and inspected by righteous material evidences, computer simulation, and studies such as automobile engineering, traveling and collision accident dynamics, road and traffic engineering. In this paper, it displays the results of studying cases with the reasons of traffic accidents by analyzing and studying automobile kinetics, real traffic accidents and the results of in scientific and objective ways. After computer simulation result that it is proved that compared with unpacked road condition and packed road condition. unpacked road condition is shorter than packed road condition.

A study on the fire risk analysis on the railway tunnel and subway area (철도터널 및 지하구간에서의 화재사고 위험성 분석 연구)

  • Wang Jong Bae;Hong Seon Ho;Kim Sang Ahm;Park Ok Jeong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.271-276
    • /
    • 2003
  • In this paper, various hazard factors are reviewed on the train fire accident in railway tunnel and subway. In case studies of systematic risk evaluation on the tunnel fire accident, we have learned the critical fire safety points for accident prevention and damage reduction such as fire-endurance of infrastructure, mortality of heat & toxic smoke, emergency situation control and management of escape requirements etc.. These hazard analysis study will contribute for improving the railway fire-safety and establishing the long-tenn safety management plan.

  • PDF

A Study of a Dike Design Considering a Leakage Velocity at an Opening Hole in Case of a Leakage Accident (누출사고 시 저장탱크 위험물 누출속도를 고려한 방유제 설계에 관한 연구)

  • Lee, Jae Yeol;Kim, Dong Hyun;Ban, Soon Hee;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • Chemical accidents generated during maintenance, repair, and normal operation, such as dispersion, fire, and explosions, can cause massive losses like a 2012 hydro fluorine leak in Gumi, South Korea. Since this accident, many researches have studied physical mitigation systems. However, due to many difficulties including potential costs and lack time, it is really hard for many companies to install mitigation systems without prior knowledge. Thus, the efficacy of mitigation system should be evaluated. This study assesses a dike design considering the fluid velocity at an open hole when a leakage accident occurs. It is assumed that leakage materials follow a free fall motion. Throughout case studies, a current KOSHA guide for a dike design was evaluated and new guidelines handling various conditions were proposed.

A Study of the Distance between a Tank and a Dike Considering a Leakage Velocity at an Opening Hole in case of a Leakage Accident (누출사고 시 저장탱크 위험물 누출속도를 고려한 탱크와 방유제 사이 간격에 관한 연구)

  • Lee, Jae Yeol;Kim, Dong Hyun;Ban, Soon Hee;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.35-41
    • /
    • 2018
  • Chemical accidents generated during maintenance, repair, and normal operation, such as dispersion, fire, and explosions, can cause massive losses like a 2012 hydro fluorine leak in Gumi, South Korea. Since this accident, many researches have studied physical mitigation systems. However, due to the lack of potential costs and time, it is really hard for many companies to install mitigation systems without prior knowledge. Thus, the efficacy of mitigation system should be evaluated. This study assesses a dike design considering the fluid velocity at an open hole when a leakage accident occurs. It is assumed that leakage materials follow a free fall motion. Throughout case studies, a current KOSHA guide for a dike design was evaluated and new guidelines handling various conditions were proposed.

Discussions on the Disaster Management for NaTech based on the Foreign Case Studies (국외 NaTech 사례연구를 통한 재난관리 방안 고찰)

  • Yoo, Byungtae;Baek, Jong-bae;Ko, Jae-wook
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.111-117
    • /
    • 2016
  • Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Technological disasters triggered by natural disasters are referred to as NaTech(Natural Disaster Triggered Technological Disaster). These trends increase the probability of catastrophic future disasters and the potential for mass human exposure to hazardous materials released during disasters. In the present study, we proposed some methods for effective disaster management by conducting case study of major NaTech. First, establishing information sharing system of chemical accident for stakeholders and improving disaster manuals and standards of central and local government and co-operation support system. Second, activating information service of emergency planning and community right to know. Third, improving the integrated chemical accident database including NaTech accidents.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.