• Title/Summary/Keyword: Accident and Incident

Search Result 218, Processing Time 0.025 seconds

A Cause Analysis of the Construction Incident Using Causal Loop Diagram : Safety Culture Perspective (인과지도를 활용한 건설 안전사고 원인 분석 : 안전문화 관점)

  • Choi, Yun Gil;Cho, Keun Tae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.34-46
    • /
    • 2020
  • Unlike research focused on existing technologies and individual errors to analyze the causes of incidents, this study approached them from an organization and culture. And this study is not a one way study but cyclical study what can track cause down using causal loop diagram methodology. Four diagnostic criteria for the negative state of the safety culture : secretive, blame, failure to learning, and incremental learning, combine literature study and expert opinion to derive 41 variables. Connecting these variable make 4 causal loop diagrams and total causal loop diagram. Case accumulation in secretive, accident report in blame, knowledge accumulation in failure to learning, near miss discovery in incremental learning are the main variables. Safety incident is the objective variable by classifying them into 4 stages in total loop, leading track as the most affect is case accumulation, and Step 4 as you can see accident report and near miss discovery are the result of tracking down the cause. This study can be used as a basis for improving the management priority and the system in incident prevention.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

Investigation Study of Information Improvement in Chemical Accident by Extraordinary Chemical Reaction (이상반응 화학사고 정보제공 개선 연구)

  • Kim, Sungbum;Lim, Myunghee;Park, Joongdon
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.219-225
    • /
    • 2015
  • Hydrofluoric acid leakage accident was occurred on Dec. 2012 in Hube Global. That accident has bought many changes of response in national organizations. Chemical companies respond quickly even when small quantities leakage of chemicals and response agencies were put a lot of manpower and equipment in incident response. Incident response to the response activities of the agents is difficult if the accident substance was not identified. Unknown chemicals can be generated by the water for fire-fighting during the emergency response process. In this case, an additional information was needed for response of chemical accident to prevent of great damage. In this study, we investigated the improvement of chemical accident information by extraordinary chemical accident.

Quantitative Analysis of Safety Improvement on Smart Roads (스마트도로 안전성 향상 효과의 정량화 연구)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Oh, Sung-Ho;Kim, Ho-Jeung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.44-54
    • /
    • 2011
  • Intelligent transport services on smart roads tend to have a problem at the stage of benefit-cost analysis that can not secure economic feasibility of the new services which increase early investment cost on building its infrastructure. It is expected that the number of road accidents, 'Incident/Accident', will decline through various safety services using intelligent safety facilities, intelligent transport management and so on, and that traffic congestion will also decrease. The effect of traffic congestion reduction could be the benefit by safety improvement, however current investment-analysis process in Korea does not appropriate it as a benefit. This study estimated road blocking time with 'Incident/Accident' classification and highway accident data of past three years. It also developed a generalized model by a regression analysis with a microscopical simulation. Furthermore, it suggested necessary units on quantitative analysis in order to make the developed model applicable to investment evaluation. As a result of applying the developed model to Smart-Highway Project, it showed that total safety improvement benefit is about 139 billion dollars over 30 years when it is supposed that accident decreasing rate by smart safety facilities is 10%.

A Proposition of Accident Causation Model for the Analysis of Human Error Accidents in Railway Operations (철도 분야의 인적 오류 사고 분석을 위한 사고발생 모형의 제안)

  • Kim, Dong-San;Baek, Dong-Hyun;Yoon, Wan-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.241-248
    • /
    • 2010
  • In accident analysis, it is essential to understand the causal pathways of the accident. Although numerous accident models have been developed to help analysts understand how and why an accident occurs, most of them do not include all elements related to the accident in various fields. Thus analysis of human error accidents in railway operations using these existing models may be possible, but inevitably incomplete. For a more thorough analysis of the accidents in railway operations, a more exhaustive model of accident causation is needed. This paper briefly reviews four recent accident causation models, and proposes a new model that overcomes the limitations of the existing models for the analysis of human error accidents in railway operations. In addition, the usefulness and comprehensiveness of the proposed model is briefly tested by explaining 12 railway accident cases with the model. The proposed accident causation model is expected to improve understanding of how and why an accident/incident occurs, and help prevent analysts from missing any important aspect of human error accidents in railway operations

A Study on the Accident Model from the System Safety Perspective - Focused on Aircraft Accident - (시스템안전 관점에서의 사고 모형 고찰 - 항공기 사고를 중심으로 -)

  • Kim, Dae Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.63-70
    • /
    • 2020
  • Many organizations apply reactive safety management to prevent the same or similar types of accidents by through investigation and analysis of the accident cases. Although research on investigation techniques has contributed a lot to the objective results of safety accidents and the preparation of countermeasures, many accident investigation techniques currently in use treat accidents from a linear perspective, revealing limitations in reflecting current systems dominated by complexity and uncertainty. In order to overcome these limitations, this study will review recent studies and concepts from a system safety perspective and predict future research trends through a case analysis of aviation accident. The models used in the analysis are STAMP, HFACS, and FRAM, and the characteristics of each technique are presented so that analysts who perform related tasks in the field can refer to them.

Simulation of Water Pollution Accident with Water Quality Model (수질모형을 이용한 수질오염사고의 모의분석)

  • Choi, Hyun Gu;Park, Jun Hyung;Han, Kun Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2014
  • Depending on the change of lifestyle and the improvement of people's living standards and rapid industrialization, urbanization of recent, demand for water is increasing rapidly. So emissions of domestic wastewater and various industrial waste water has increased, and water quality is worsening day by day. Therefore, in order to provide a measure against the occurrence of water pollution accident, this study was tried to simulate water pollution accident. This study simulated 2008 Gimcheon phenol accident using 1,2-D model, and analyze scenario for prevent of water pollution accident. Consequently the developed 1-D model presents high reappearance when compared with 2-D model, and has been able to obtain results in a short simulation run time. This study will contribute to the water pollution incident response prediction system and water quality analysis in the future.

Classification and Analysis of Human Error Accidents of Helicopter Pilots in Korea (국내 헬리콥터 조종사 인적오류 사고 분류 및 분석)

  • Yu, TaeJung;Kwon, YoungGuk;Song, Byeong-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • There are two to three helicopter accidents every year in Korea, representing 5.7 deaths per 100,000 flights. In this study, an analysis was conducted on helicopter accidents that occurred in Korea from 2005 to 2017. The accident analysis was based on the aircraft accident and incident report published by the Aircraft and Railway Accident Investigation Board. This Research analyzed the characteristics of accidents occurring in Korea caused by human error by pilots. Accident analysis was done by classifying the organization, flight mission, aircraft class, flight stage, accident cause, etc. Pilot's huan error was classified as Skill-based error, decision error and perceptual error in accordance with the HFACS taxonomy. The accidents caused by pilot's human error were classified into five categories: powerlines collision, loss of control, fuel exhaustion, unstable approach to reservoir, and elimination of tail rotor.

Development of a Web Based Railway Accident Analysis Program for Risk Assessment (윕기반 철도 위험도평가 사고분석 프로그램 개발에 관한 연구)

  • Park, Chan-Woo;Kwak, Sang-Log;Wang, Jong-Bae;Park, Joo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1126-1131
    • /
    • 2006
  • Risk assessment of a railway system should be periodically conducted managing a large amount of accumulating accident/incident data and scenarios, which generally requires enormous time and efforts. Therefore, special information management system is essential for railway risk assessment, where data needed for decisions on managing the railway safety could be promptly supported. The objective of this study is to develop a railway accident analysis program for risk assessment. The program is application running on the web which links railway accident analysts throughout the railway industry to a central database. Data entered, together with associated code tables. is stored on MS-SQL database. The program uses the concepts of accident, safety events, causes, related factors(vehicle, person, infrastructure, tool/equipment), recommendations to bring together the various elements of railway accidents. The program will be useful in finding hazard conditions, accident scenarios, quantitatively assessing the risk, and providing pertinent risk measures, eventually serving to prevent railway accidents and reduce severities of railway accidents.

  • PDF