• Title/Summary/Keyword: Accident Severity Prediction Model

Search Result 19, Processing Time 0.029 seconds

The Development of Traffic Accident Severity Evaluation Models for Elderly Drivers (고령운전자 교통안전성 평가모형 개발)

  • Kim, Tae-Ho;Lee, Ki-Young;Choi, Yoon-Hwan;Park, Je-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.118-127
    • /
    • 2009
  • This study tries to develop model in order to assess personal factors of senior traffic accidents that are widely recognized as one of the social problems. For the current practice. it gathers data (Simulation & Questionnaire Survey) of KOTSA and conducts Poisson and Negative Binomial Regression Analysis to develop traffic accident severity model. The results show that elderly drivers' accidents are mainly affected by attentiveness selection, velocity prediction ability and attentiveness distribution ability in a positive(+) way. Second, non-senior drivers' accidents are also positively(+) influenced by attentiveness selection, velocity prediction, distance perception, attentiveness distribution ability and attentiveness diversion ability. Therefore, influencing factors of senior and non-senior drivers to vehicle accidents are different. This eventually poses a indication that preliminary education for car accident prevention should be implemented based up[n the distinction between senior drivers and non-senior drivers.

  • PDF

Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms (머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구)

  • Kim, Seunghoon;Lym, Youngbin;Kim, Ki-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • Moving toward an aged society, traffic accidents involving elderly drivers have also attracted broader public attention. A rapid increase of senior involvement in crashes calls for developing appropriate crash-severity prediction models specific to senior drivers. In that regard, this study leverages machine learning (ML) algorithms so as to predict the severity of vehicle-pedestrian collisions induced by elderly drivers. Specifically, four ML algorithms (i.e., Logistic model, K-nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM)) have been developed and compared. Our results show that Logistic model and SVM have outperformed their rivals in terms of the overall prediction accuracy, while precision measure exhibits in favor of RF. We also clarify that driver education and technology development would be effective countermeasures against severity risks of senior driver-induced collisions. These allow us to support informed decision making for policymakers to enhance public safety.

A Classification Model for Predicting the Injured Body Part in Construction Accidents in Korea

  • Lim, Jiseon;Cho, Sungjin;Kang, Sanghyeok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.230-237
    • /
    • 2022
  • It is difficult to predict industrial accidents in the construction industry because many accident factors, such as human-related factors and environment-related factors, affect the accidents. Many studies have analyzed the severity of injuries and types of accidents; however, there were few studies on the prediction of injured body parts. This study aims to develop a classification model to predict the part of the injured body based on accident-related factors. Construction accident cases from June 2018 to July 2021 provided by the Korea Construction Safety Management Integrated Information were collected through web crawling and then preprocessed. A naïve Bayes classifier, one of the supervised learning algorithms, was employed to construct a classification model of the injured body part, which has four categories: 1) torso, 2) upper extremity, 3) head, and 4) lower extremity. The predictor variables are accident type, type of work, facility type, injury source, and activity type. As a result, the average accuracy for each injured body part was 50.4%. The accuracy of the upper extremity and lower extremity was relatively higher than the cases of the torso and head. Unlike the other classifications, such as spam mail filtering, a naïve Bayes classifier does not provide a good classification performance in construction accidents. The reasons are discussed in the study. Based on the results of this study, more detailed guidelines for construction safety management can be provided, which help establish safety measures at the construction site.

  • PDF

Prediction of Severities of Rental Car Traffic Accidents using Naive Bayes Big Data Classifier (나이브 베이즈 빅데이터 분류기를 이용한 렌터카 교통사고 심각도 예측)

  • Jeong, Harim;Kim, Honghoi;Park, Sangmin;Han, Eum;Kim, Kyung Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • Traffic accidents are caused by a combination of human factors, vehicle factors, and environmental factors. In the case of traffic accidents where rental cars are involved, the possibility and the severity of traffic accidents are expected to be different from those of other traffic accidents due to the unfamiliar environment of the driver. In this study, we developed a model to forecast the severity of rental car accidents by using Naive Bayes classifier for Busan, Gangneung, and Jeju city. In addition, we compared the prediction accuracy performance of two models where one model uses the variables of which statistical significance were verified in a prior study and another model uses the entire available variables. As a result of the comparison, it is shown that the prediction accuracy is higher when using the variables with statistical significance.

Neural Network-based Modeling of Industrial Safety System in Korea (신경회로망 기반 우리나라 산업안전시스템의 모델링)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • It is extremely important to design safety-guaranteed industrial processes because such process determine the ultimate outcomes of industrial activities, including worker safety. Application of artificial intelligence (AI) in industrial safety involves modeling industrial safety systems by using vast amounts of safety-related data, accident prediction, and accident prevention based on predictions. As a preliminary step toward realizing AI-based industrial safety in Korea, this study discusses neural network-based modeling of industrial safety systems. The input variables that are the most discriminatory relative to the output variables of industrial safety processes are selected using two information-theoretic measures, namely entropy and cross entropy. Normalized frequency and severity of industrial accidents are selected as the output variables. Our simulation results confirm the effectiveness of the proposed neural network model and, therefore, the feasibility of extending the model to include more input and output variables.

Development of a Traffic Accident Prediction Model for Urban Signalized Intersections (도시부 신호교차로 안전성 향상을 위한 사고예측모형 개발)

  • Park, Jun-Tae;Lee, Soo-Beom;Kim, Jang-Wook;Lee, Dong-Min
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.99-110
    • /
    • 2008
  • It is commonly estimated that there is a much higher potential for accidents at a crossroads than along a single road due to its plethora of conflicting points. According to the 2006 figures by the National Police Agency, the number of traffic accidents at crossroads is greatly increasing compared to that along single roads. Among others, crossroads installed with traffic signals have more varied influential factors for traffic accidents and leave much more room for improvement than ones without traffic signals; thus, it is expected that a noticeable effect could be achieved in safety if proper counter-measures against the hazards at a crossroads were taken together with an estimate of causes for accidents This research managed to develop models for accident forecasts and accident intensity by applying data on accident history and site inspection of crossroads, targeting four selected downtown crossroads installed with traffic signals. The research was done by roughly dividing the process into four stages: first, analyze the accident model examined before; second, select variables affecting traffic accidents; third, develop a model for traffic accident forecasting by using a statistics-based methodology; and fourth, carry out the verification process of the models.

Spatiotemporal Feature-based LSTM-MLP Model for Predicting Traffic Accident Severity (시공간 특성 기반 LSTM-MLP 모델을 활용한 교통사고 위험도 예측 연구)

  • Hyeon-Jin Jung;Ji-Woong Yang;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • Rapid urbanization and advancements in technology have led to a surge in the number of automobiles, resulting in frequent traffic accidents, and consequently, an increase in human casualties and economic losses. Therefore, there is a need for technology that can predict the risk of traffic accidents to prevent them and minimize the damage caused by them. Traffic accidents occur due to various factors including traffic congestion, the traffic environment, and road conditions. These factors give traffic accidents spatiotemporal characteristics. This paper analyzes traffic accident data to understand the main characteristics of traffic accidents and reconstructs the data in a time series format. Additionally, an LSTM-MLP based model that excellently captures spatiotemporal characteristics was developed and utilized for traffic accident prediction. Experiments have proven that the proposed model is more rational and accurate in predicting the risk of traffic accidents compared to existing models. The traffic accident risk prediction model suggested in this paper can be applied to systems capable of real-time monitoring of road conditions and environments, such as navigation systems. It is expected to enhance the safety of road users and minimize the social costs associated with traffic accidents.

Comparison of Methodologies for Characterizing Pedestrian-Vehicle Collisions (보행자-차량 충돌사고 특성분석 방법론 비교 연구)

  • Choi, Saerona;Jeong, Eunbi;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.53-66
    • /
    • 2013
  • The major purpose of this study is to evaluate methodologies to predict the injury severity of pedestrian-vehicle collisions. Methodologies to be evaluated and compared in this study include Binary Logistic Regression(BLR), Ordered Probit Model(OPM), Support Vector Machine(SVM) and Decision Tree(DT) method. Valuable insights into applying methodologies to analyze the characteristics of pedestrian injury severity are derived. For the purpose of identifying causal factors affecting the injury severity, statistical approaches such as BLR and OPM are recommended. On the other hand, to achieve better prediction performance, heuristic approaches such as SVM and DT are recommended. It is expected that the outcome of this study would be useful in developing various countermeasures for enhancing pedestrian safety.

Analysis of Accident Characteristics and Improvement Strategies of Flash Signal-operated Intersection in Seoul (서울시 점멸신호 운영에 따른 교통사고 분석 및 개선방안에 관한 연구)

  • Kim, Seung-Jun;Park, Byung-Jung;Lee, Jin-Hak;Kim, Ok-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.54-63
    • /
    • 2014
  • Traffic accident frequency and severity level in Korea are known to be very serious. Especially the number of pedestrian fatalities was much worse and 1.6 time higher than the OECD average. According to the National Police Agency, the flash signals are reported to have many safety benefits as well as travel time reduction, which is opposed to the foreign studies. With this background of expanding the flash signal, this research aims to investigate the overall impact of the flash signal operation on safety, investigating and comparing the accident occurrence on the flash signal and the full signal intersections. For doing this accident prediction models for both flash and full signal intersections were estimated using independent variables (geometric features and traffic volume) and 3-year (2011-2013) accident data collected in Seoul. Considering the rare and random nature of accident occurrence and overdispersion (variance > mean) of the data, the negative binomial regression model was applied. As a result, installing wider crosswalk and increasing the number of pedestrian push buttons seemed to increase the safety of the flash signal intersections. In addition, the result showed that the average accident occurrence at the flash signal intersections was higher than at the full signal-operated intersections, 9% higher with everything else the same.