• Title/Summary/Keyword: Accident Reconstruction

Search Result 122, Processing Time 0.029 seconds

A Study on the Side Collision Accident Reconstruction Using Database of Crush Test of Model Cars (모형자동차 충돌시험의 데이터베이스를 이용한 측면 충돌사고 재구성)

  • Sohn, Jeong-Hyun;Park, Seok-Cheon;Kim, Kwang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.49-56
    • /
    • 2009
  • In this study, a side collision accident reconstruction using database based on the deformed shape information from the collision test using model cars is suggested. A deformation index and angle index related to the deformed shape is developed to set the database for the collision accident reconstruction algorithm. Two small size RC cars are developed to carry out the side collision test. Several side collision tests according to the velocity and collision angles are performed for establishing the side collision database. A high speed camera with 1000fps is used to capture the motion of the car. A side collision accident reconstruction algorithm is developed and applied to find the collision conditions before the accident occurs. Two collision cases are tested to validate the database and the algorithm. The results obtained by the reconstruction algorithm show good match with original conditions with regard to the velocity and angle.

A study on Pedestrian Accident Reconstruction Models: Comparison and Improvement (보행자-차량 충돌사고 재현모형 비교분석 및 개선 연구)

  • Jo, Jeong-Il;O, Cheol;Kim, Nam-Il;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.69-77
    • /
    • 2007
  • This study presents comparison results for pedestrian accident reconstruction models representing the relationship between collision speed and horizontal distance that a body travels while falling and sliding. A set of 49 reliable pedestrian accident cases are applied to compare the existing reconstruction models. In addition, the authors investigate the effects of a set of parameters associated with the effects of the frontal shape of a vehicle on the horizontal distance a pedestrian travels while falling and sliding. It has been revealed that the length of the bumper is the most dominant factor to affect the horizontal distance of pedestrian travel after collision. Further analyses utilizing more accident data need to conducted to develop a more accurate and reliable reconstruction model.

The Vehicle Accident Reconstruction using Skid and Yaw Marks (스키드마크 및 요마크를 이용한 차량사고재구성)

  • 이승종;하정섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

Speed Estimation from Tire Marks for Vehicle Accident Reconstruction (곡선 형태의 타이어 자국으로부터 차량사고시 속도추정)

  • Kim, Min-Seok;Lee, Ji-Hoon;Yoo, Wan-Suk;Kim, Kee-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, a new technique was suggested to estimate vehicle speed for the traffic accident reconstruction, and accident investigators can estimate initial vehicle speed based on this suggested technique. Turning tests with several vehicle speeds were executed and compared with the motion of the vehicle and the shape of the tire marks. A new method for estimating the coefficient of friction is suggested by using the longitudinal and lateral components of tire marks. And also, a speed calculation graph is suggested to estimate vehicle speed for traffic accident reconstruction.

A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle (실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구)

  • Chung, Seunghwan;Ryu, Je Myoung;Chung, Nakseung;Yu, Minsang;Pyun, Moo Song;Kim, Jae Bu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

Study on Reliability of New Digital Tachograph for Traffic Accident Investigation and Reconstruction (교통사고 조사 및 재현에서 신형 전자식운행기록계의 신뢰성에 관한 연구)

  • Park, Jongjin;Joh, Geonwoo;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.615-622
    • /
    • 2015
  • Recently Digital-TachoGraph(DTG) was mounted mandatorily in commercial vehicles(Taxi, Bus, etc.). DTG records accurate and detailed information of the running state of vehicles related to traffic accident, such as Time, Distance, Velocity, RPM, Brake ON/OFF, GPS, Azimuth, Acceleration. Thus those standardized data can play an important role in traffic accident investigation and reconstruction. To develope the accurate and objective method using the DTG data for the reconstruction of traffic accident, we had conducted several tests such as driving test, high speed circuit test, braking test, slalom test at Korea Automobile Testing & Research Institute(KATRI), and collision test at Korea Automobile insurance repair Research and Training center(KART) with the vehicle equipped with several DTG. Development of the program which enables the reading and analysis of the DTG data was followed. In the experiments, we have found velocity error, RPM error, brake signal error and azimuth error in several products, and also non-continuous event data. The cause of these errors was deduced to be related to the correction factor, the durability of electronic parts and the algorithm.

A Reliable Study on the Accident Reconstruction using Accident Data Recorder (사고기록장치를 이용한 교통사고재현에 관한 신뢰성 연구)

  • Baek, Se-Ryong;Cho, Joeng-Kwon;Park, Jong-Jin;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.179-187
    • /
    • 2014
  • As an Accident data recorder (ADR) is a system to record a vehicle's status and dynamics information on the before and after of accident, Traffic accident investigation agencies and parts developers have a lot of interest to analyze an accident objectively and develop automotive safety devices by using real accident data, This study is to analyze an accident objectively and scientifically on the basis of traffic accident reconstruction with the use of output data of an event data recorder. This study is conducted double lane change test six times and slalom test one time as a field driving test and simulation. Based on the vehicle speed, the longitudinal and transverse acceleration, steering angle, driving path, and other kinds of information obtained from the field driving test, this study performed a simulation with PC-Crash program of reenacting and analyzing a traffic accident. The simulation was performed twice in the acceleration-steering angle input method and in the acceleration-driving path input method. By comparing the result of the field driving test with the results of the two simulations, we drew an analysis method with the optimal path reconstruction.

Intersections Accident Simulation of Automated Vehicles based on Actual Accident Database (국내 실사고 기반 자율주행차 교차로 사고 시뮬레이션)

  • Shin, Yunsik;Park, Yohan;Shin, Jae-Kon;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.106-113
    • /
    • 2021
  • In this study, The behavior of an autonomous vehicle in an intersection accident situation is predicted. Based on a representative intersection accident situation from actual intersection accident database, simulation was performed by applying the automatic emergency braking algorithm used in the autonomous driving system. Accident reconstruction was performed based on the accident report of the representative accident situation. After applying the autonomous driving system to the accident-related vehicle, the tendency of intersection accidents that may occur in autonomous vehicles was identified and analyzed.

A Study on the Side Collision Accident Reconstruction Using 3-Dimensional Crash Analysis (3차원 충돌해석 정보를 이용한 측면 충돌 사고 재구성)

  • Jang, In-Sik;Kim, Il-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2008
  • The side collision reconstruction algorithm is developed using three dimensional car crash analysis. Medium size passenger car is modeled for finite element analysis. Total 24 side collision configurations, four different speed and six different angle, are set up for making side collision database. Deformation index and degree index are built up for each collision case. Deformation index is a kind of deformation estimate averaging displacement of side door of crashed car from finite element analysis result. Angle index is constructed measuring deformed angle of crashing car. There are two kinds of angle index, one is measured at driver's side and the other is measured at passenger's side. Also a collision analysis information in side of cars is used for giving a basis for scientific and practical reason in a reconstruction of the car accident. The analysis program, LS-DYNA3D is utilized for finite element analysis program for a collision analysis. Those database are used for side collision reconstruction. Side collision reconstruction algorithm is developed, and applied to find the collision conditions before the accident occurs. Three example collision cases are tried to check the effectiveness of the algorithm. Deformation index and angle index is extracted for the case from the analysis result. Deformation index is compared to the established database, and estimated collision speed and angle are introduced by interpolation function. Angle index is used to select a specific collision condition from the several available conditions. The collision condition found by reconstruction algorithm shows good match with original condition within 10% error for speed and angle. As a result, the calculation from the reconstruction of the situation is reproducing the situation well. The performance in this study can be used in many ways for practical field using deformation index and degree index. Other different collision situations may be set up for extending the scope of this study in the future.

Impact Analysis for Vehicle Accident Reconstruction (자동차 사고 재고성을 위한 충돌 해석)

  • 한인환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.178-190
    • /
    • 1998
  • We have developed a planar impact model with a capability of reverse calculation to reconstruct various types of automobile collisions. This topic is the main part of what is referred to as accident reconstruction. The model uses the principle of impulse and momentum, and introduces a restitution coefficient and an impulse ratio at the impact center. Based on the car-to-car collision test results, we present how to estimate the restitution coefficient and the impulse ratio from some impact conditions. To validate the model and improve its reliability in accident analysis, the collision analysis has been performer with the estimated parameters. The analysis and experimental results agree well in the kinetic energy loss and the post-impact velocity.

  • PDF