• Title/Summary/Keyword: Accident Prediction Model

Search Result 225, Processing Time 0.029 seconds

A Study on the Development of GIS-based Complex Simulation Prototype for Reducing the Damage of Chemical Accidents (화학사고 피해저감을 위한 GIS 연계 복합시뮬레이션 프로토타입 개발에 관한 연구)

  • Kim, Eun-Byul;Oh, Joo-Yeon;Lee, Tae Wook;Oh, Won Kyu;Kim, Hyun-Joo;Lim, Dong-yun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1255-1266
    • /
    • 2020
  • In this study, a complex simulation prototype was developed for rapid and accurate prediction of chemical dispersion range in order to reduce human casualties caused by chemical accidents. Complex simulation considered the leakage momentum during the near-field dispersion to take into account the leakage characteristics of the chemical. In the far-distance dispersion process, the wind distribution of the existing model, which was presented uniformly, was improved using weather and topographical information around the accident site, to realize a wind field similar to the actual one. Finally, the damage range was more precise than the existing model in line with the improved near- and far-distance dispersion process. Based on the results of damage range prediction of the complex simulation, it is expected that it will be highly utilized as a system to support policy decision-making such as evacuation and return of residents after a chemical accident.

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

Two Dimensional Analysis for the External Vessel Cooling Experiment

  • Yoon, Ho-Jun;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.410-423
    • /
    • 2000
  • A two-dimensional numerical model is developed and applied to the LAVA-EXV tests performed at the Korea Atomic Energy Research Institute (KAERI) to investigate the external cooling effect on the thermal margin to failure of a reactor pressure vessel (RPV) during a severe accident. The computational program was written to predict the temperature profile of a two-dimensional spherical vessel segment accounting for the conjugate heat transfer mechanisms of conduction through the debris and the vessel, natural convection within the molten debris pool, and the possible ablation of the vessel wall in contact with the high temperature melt. Results of the sensitivity analysis and comparison with the LAVA-EXV test data indicated that the developed computational tool carries a high potential for simulating the thermal behavior of the RPV during a core melt relocation accident. It is concluded that the main factors affecting the RPV failure are the natural convection within the debris pool and the ablation of the metal vessel, The simplistic natural convection model adopted in the computational program partly made up for the absence of the mechanistic momentum consideration in this study. Uncertainties in the prediction will be reduced when the natural convection and ablation phenomena are more rigorously dealt with in the code, and if more accurate initial and time-dependent conditions are supplied from the test in terms of material composition and its associated thermophysical properties.

  • PDF

Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes

  • Jeon, Joongoo;Kim, Yeon Soo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1939-1950
    • /
    • 2019
  • The MELCOR code useful for a plant-specific hydrogen risk analysis has inevitable limitations in prediction of a turbulent flow of a hydrogen mixture. To investigate the accuracy of the hydrogen risk analysis by the MELCOR code, results for the turbulent gas behavior at pipe rupture accident were compared with CFX results which were verified by the American National Standard Institute (ANSI) model. The postulated accident scenario was selected to be surge line failure induced by station blackout of an Optimized Power Reactor 1000 MWe (OPR1000). When the surge line failure occurred, the flow out of the surgeline was strongly turbulent, from which the MELCOR code predicted that a substantial amount of hydrogen could be released. Nevertheless, the results indicated nonflammable mixtures owing to the high steam concentration released before the failure. On the other hand, the CFX code solving the three-dimensional fluid dynamics by incorporating the turbulence closure model predicted that the flammable area continuously existed at the jet interface even in the rising hydrogen mixtures. In conclusion, this study confirmed that the MELCOR code, which has limitations in turbulence analysis, could underestimate the existence of local combustible gas at pipe rupture accident. This clear comparison between two codes can contribute to establishing a guideline for computational hydrogen risk analysis.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Damage Effects Modeling by Chlorine Leaks of Chemical Plants (화학공장의 염소 누출에 의한 피해 영향 모델링)

  • Jeong, Gyeong-Sam;Baik, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.76-87
    • /
    • 2018
  • This study describes the damage effects modeling for a quantitative prediction about the hazardous distances from pressurized chlorine saturated liquid tank, which has two-phase leakage. The heavy gas, chlorine is an accidental substance that is used as a raw material and intermediate in chemical plants. Based on the evaluation method for damage prediction and accident effects assessment models, the operating conditions were set as the standard conditions to reveal the optimal variables on an accident due to the leakage of a liquid chlorine storage vessel. A model of the atmospheric diffusion model, ALOHA (V5.4.4) developed by USEPA and NOAA, which is used for a risk assessment of Off-site Risk Assessment (ORA), was used. The Yeosu National Industrial Complex is designated as a model site, which manufactures and handles large quantities of chemical substances. Weather-related variables and process variables for each scenario need to be modelled to derive the characteristics of leakage accidents. The estimated levels of concern (LOC) were calculated based on the Gaussian diffusion model. As a result of ALOHA modeling, the hazardous distance due to chlorine diffusion increased with increasing air temperature and the wind speed decreased and the atmospheric stability was stabilized.

Prevention System for Real Time Traffic Accident (실시간 교통사고 예방 시스템)

  • Hong You-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.47-54
    • /
    • 2006
  • In order to reduce traffic accidents, many researchers studied a traffic accident model. The Cause of traffic accidents is usually the mis calculation of traffic signals or bad traffic intersection design. Therefore, to analyse the cause of traffic accidents, it takes effort. This paper, it calculates the optimal safe car speed considering intersection conditions and weather conditions. It will recommend calculation of 1/3 in vehicle speed when there are rainy days and snow days. But the problem is that it will always display the same speed limit when whether conditions change. In order to solve these problems, in this paper, it is proposed the calculation of optimal safety speed algorithm uses weather conditions and road conditions. Computer simulations is prove that it computes the traffic speed limit correctly, which proposed considering intelligent traffic accident prediction algorithms.

  • PDF

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Development of Traffic Accident Frequency Model for Evaluating Safety at Rural Signalized Intersections (지방부 신호교차로 안전성 판단을 위한 사고예측모형 개발)

  • Kim, Eung-Cheol;Lee, Dong-Min;Kim, Do-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.53-63
    • /
    • 2008
  • Even though accident frequencies in roadway segments have been decreasing since 2000, there has been increasing the number of vehicle crashes at intersections. Due to this increase, safety problems at intersection recently started to be regarded as significant issues. The purpose of this study is to analyze the effects of road conditions, traffic operational conditions, and other influencing condition on intersection safety. Then a traffic accident frequency prediction model to evaluate the safety at intersections was developed based on the correlations between influencing factors and vehicle crashes. In this research, critically significant factors affecting vehicle crashes at rural four-legs signalized intersections were investigated. It was found that Poisson regression was the best fit method to developing a accident frequency modeling using the collected data in this study. Through this study, it was concluded that exclusive left turn lane, crosswalk, posted speed, lighting, angle, and ADT are significant influencing factors on the intersection safety.

  • PDF