사고 데이터는 사고의 경각심을 보여주거나 유사사례를 검토 할 때 활용되기는 하나 사고 데이터 본질에 대한 분석이나 사고와 주변 환경요소와의 연관성에 대한 분석은 굉장히 미흡하다. 따라서 사고와 연관된 데이터와 함께 분석하는 기법을 개발하여 특정 지역에 대한 사고 가능성을 제시하는 것이 대단히 필요하다. 본 연구는 과거 기상정보 데이터와 사고 및 신고 데이터를 기반으로 지역별 사고 가능성을 산출하는 분석 모델 개발하고 시스템을 구현하는 것을 목적으로 한다. 한국의 다수 지역에 대해 기상과 사고간의 개연성을 토대로 선택적 사용자 환경변수가 적용된 k-NN 과 의사결정트리 알고리즘 모델이 생성되도록 시스템을 설계하고 개발한다. 향후, 본 연구에서 개발된 모델은 좀 더 협소한 지역의 위험도를 분석하고 산출하는데 사용할 계획이다.
PURPOSES : This study deals with the pedestrian accidents in case of Cheongju. The goals are to develop the pedestrian accident model. METHODS : To analyze the accident, count data models, truncated count data models and Tobit regression models are utilized in this study. The dependent variable is the number of accident. Independent variables are traffic volume, intersection geometric structure and the transportation facility. RESULTS : The main results are as follows. First, Tobit model was judged to be more appropriate model than other models. Also, these models were analyzed to be statistically significant. Second, such the main variables related to accidents as traffic volume, pedestrian volume, number of Entry/exit, number of crosswalk and bus stop were adopted in the above model. CONCLUSIONS : The optimal model for pedestrian accidents is evaluated to be Tobit model.
Objectives: This study aims at grasping the socio-demographic variable, safety education experience, personality type and accident experience and analyzing if the personality type influences on the accident experience. Methods: For 330 third-year students at one middle school located at Gyeonggi-Do, questionnaire survey was performed on 16th, October, 2010. Excepting data of 19 students poor in contents, 311 students' data were analyzed. Results: The results of analysis are like followings. 1. As for relation between the socio-demographic variable and accident experience, it showed statistical significance in sex and how to go to school. And there was no statistical significance in parents' job, educational level of parents, residential type, school record and allowance. 2. As for relation between safety education experience and accident experience, safety education doing school than family lowered accident incidence outstandingly. When safety education frequency increased one time, possibility to experience accident decreased to 30%. 3. As for relation between 4 personality types of MBTI and accident experience, Thinking(T) experienced accident more than Feeling(F). Moreover, it showed difference in accident type and injuried degree. This results were statistically significant. As the result of analyzing the injuried degree by sex only in Thinking(T) and Feeling(F), female students had statistically significant difference. Conclusions: Health care providers should develop school safety programs by characteristics of personality.
교통사고의 원인을 규명하고 미래의 사고를 방지하기 위한 노력의 일환으로 데이터 마이닝 기법을 이용한 교통 데이터 분석의 연구가 이루어지고 있다. 하지만 기존의 교통 데이터를 이용한 마이닝 연구들은 학습된 결과를 사람이 이해하기 어려워 분석에 많은 노력이 필요하다는 문제가 있었다. 본 논문에서는 많은 속성들로 표현된 교통사고 데이터로부터 유용한 패턴을 발견하기 위해 규칙 학습 기반의 데이터 마이닝 기법인 연관규칙 학습기법과 서브그룹 발견기법을 적용하였다. 연관규칙 학습기법은 비지도 학습 기법의 하나로 데이터 내에서 동시에 많이 등장하는 아이템(item)들을 찾아 규칙의 형태로 가공해 주며, 서브그룹 발견기법은 사용자가 지정한 대상 속성이 결론부에 나타나는 규칙을 학습하는 지도학습 기반 기법으로 일반성과 흥미도가 높은 규칙을 학습한다. 규칙 학습 시 사용자의 의도를 반영하기 위해서는 하나 이상의 관심 속성들을 조합한 합성 속성을 만들어 규칙을 학습할 수 있다. 규칙이 도출되고 나면 후처리 과정을 통해 중복된 규칙을 제거하고 유사한 규칙을 일반화하여 규칙들을 더 단순하고 이해하기 쉬운 형태로 가공한다. 교통사고 데이터를 대상으로 두 기법을 적용한 결과 대상 속성을 지정하지 않고 연관규칙 학습기법을 적용하는 경우 사용자가 쉽게 알기 어려운 속성 사이의 숨겨진 관계를 발견할 수 있었으며, 대상 속성을 지정하여 연관규칙 학습기법과 서브그룹 발견기법을 적용하는 경우 파라미터 조정에 많은 노력을 기울여야 하는 연관규칙 학습기법에 비해 서브그룹 발견기법이 흥미로운 규칙들을 더 쉽게 찾을 수 있음을 확인하였다.
우리나라의 경제 성장과 도로 환경의 변화를 통해 국내 자동차 시장이 성장하였으나, 이로 인해 교통사고율 또한 증가하였고, 인명 피해가 심각한 수준이다. 이에 따라, 정부에서는 교통사고 데이터를 개방하고 문제를 해결하기 위한 정책을 수립 및 추진 중이다. 본 논문에서는 교통사고 데이터를 이용하여 클래스의 불균형을 해소하고, Hybrid Model 구축을 통한 교통사고 예측을 위해 원본 교통사고 데이터와 Sampling을 수행한 데이터를 학습 데이터로 사용한다. 두 학습데이터에 연관규칙 학습기법인 FP-Growth 알고리즘을 이용하여 교통사고 상해 심각도와 연관된 패턴을 학습한다. 두 학습 데이터의 연관 패턴을 분석을 통해 같은 연관된 패턴을 추출하고 의사결정트리와 다항 로지스틱 회귀분석기법에 연관된 속성에 가중치를 부여하여 융합형 Hybrid Model을 구축하고 교통사고 피해자 상해 심각도를 예측하는 방법에 대해 제안한다.
KIDAS (Korean In-Depth Accident Study) is a data structure of accident investigation type, vehicle breakage and human injury database. A consortium of research institutes, universities, and medical institutions has been established and operated. KIDAS has the strongest difference from the TAAS (Traffic Accident Analysis System), which is the data of the National Police Agency, that it can grasp the injury information of passengers. In this study, the mean age and weight of the most frequent accident types in the KIDAS accident statistics were calculated to determine the degree of injury according to gender. Through the MADYMO analysis, it is aimed to grasp the difference of dummy injury using commercial dummy models and scaling models are currently used.
This study deals with the traffic accident of truck at circular intersection. The purpose of this study is to develop the truck accident models based on type of accident and conflict. In pursuing the above, the study gives particular attentions to selecting the appropriate models among Poisson and Negative binomial models using statistical program LIMDEP 8.0. The traffic accident data from 2007 to 2014 are collected from TAAS data set of Road Traffic Authority. Such the dependent variable as number of truck accidents and the 24 independent variables as geometry, traffic volume and others are used. The main results are as follows. First, 5 Poisson models (${\rho}^2$ of 0.164~0.351) which are all statistically significant are selected. Second, the common variable based on type of accident and conflict is analyzed to be truck apron width. The specific variables are, however, evaluated to splitter island, area of splitter island, speed limit sign, truck apron, number approach road, circular intersection sign, speed hump and traffic volume. Finally, widening the truck apron width and improving the above specific variables are analyzed to be important for truck accident reduction at circular intersections.
In this study, the risk factors of coastal purse seine fisherman were analyzed through a survey of fishery workers of coastal purse seine fishery and the accident compensation insurance data of the fisheries workers of the National Federation of Fisheries Cooperatives (NFFC). The classified fishing operation accident data was analyzed through 4M (Man, Machine, Media, Management) model of the National Transportation Safety Board (NTSB) and the accident prevention measures were presented using Harvey's 3E (Engineering, Education, Enforcement) model. The rate of accidents on coastal purse seinens each year was 75.8‰, 36.7‰ and 74.8‰ from 2015 to 2017. The accident frequency resulting from slipping was the highest, and the risk of a contact with gear was low. When comparing each insurance data, the average value of the contact with gear accident was the highest. This research result is expected to be important data in identifying and preventing safety hazards of coastal purse seiner fisherman in the future.
The availability of in-depth accident data is a prerequisite for each efficient traffic safety management system. Identification and definition of the relevant problem together with knowledge of the data and parameters describing this problem is essential for its successful solution. Comprehensive, up-to-date, accident data is needed for recognition of the scope of road safety problems and for raising public awareness. Reliable and relevant data enable the identification of the contributory factors of the individual accidents, and an unveiling of the background of the risk behaviour of the road users. It offers the best way to explore the prevention of accidents, and ways to implement measures to reduce accident severity. In this study, reviewing the existing iGlad and GIDAS system, KIDAS data format can be finalized through feasibility evaluation. The progressive approach is proposed to successful settlement of Korea in-depth accident study. As the initial stage of in-depth investigation DB construction, the KIDAS is not repetition of the current police based TAAS. It is essential part of improving vehicle safety and reduction of traffic fatality in Korea. 72 Contributing factors like road and traffic characteristics, vehicle parameters, and information about the people involved in the accident have to be investigated and registered as well in the KIDAS.
해양사고 분석에 관한 많은 연구가 진행되고 있으며, 해양사고는 매년 업데이트되고 있어 주기적으로 원인을 분석하고 규명하는 것이 필요하다. 이 연구에서는 이전의 데이터와 새로운 데이터를 활용하여 해양사고를 파악·분석을 통해 어선 해양사고 원인을 규명하여 사고를 예방하는 것이다. 해양사고 데이터는 어선의 특수성을 고려하여 해양안전심판원의 어선에 대한 해양사고재결서 16년간의 1,921건을 수집하였으며, 해양수산부 종합상황실 사고알림문자 이력 3년간의 1,917건을 수집하였다. 재결서 데이터와 문자 데이터는 변수에 따라 분류하였으며, 수량화 작업을 수행하였다. 수량화 작업을 통한 데이터를 사용하여 베이지안 네트워크를 이용해 사전확률을 계산하였고, 후방 추론을 이용하여 어선 해양사고를 예측하였다. 두 가지 수집한 데이터 중 해양사고재결서는 모든 어선의 사고가 재결서에 포함되지 않았기 때문에 해양수산부 사고알림문자를 선택하였다. 분류한 데이터를 베이지안 네트워크를 사용하여 어선 해양사고의 사전 확률을 계산하였다. 후방 추론으로 계산한 기관손상이 서해 연안에서 발생할 어선 해양사고의 확률은 0.0000031%였다. 이 연구의 기대효과는 어선 해양사고를 분석하기 위하여 새로운 사고알림문자 데이터를 활용하여 실제 어선 특성에 맞는 해양사고를 분석할 수 있다는 것이다. 추후에는 어선 해양사고에 영향을 미치는 변수들 간의 인과관계에 관한 연구를 수행할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.