• Title/Summary/Keyword: Access Records Management System

Search Result 97, Processing Time 0.027 seconds

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Radiation Oncology Digital Image Chart 8nd Digital Radiotherapv Record System at Samsung Medical Center (디지털 화상 병력 시스템과 디지털 방사선치료 기록 시스템의 개발과 사용 경험)

  • Huh Seung Jae;Ahn Yong Chan;Lim Do Hoon;Cho Chung Keun;Kim Dae Yong;Yeo Inhwan;Kim Moon Kyung;Chang Seung Hee;Park Suk Won
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.67-72
    • /
    • 2000
  • Background :The authors have developed a Digital image chart(DIC) and digital Radiotherapy Record System (DRRS). We have evaluated the DIC and DRRS for reliability, usefulness, ease of use, and efficiency. Materials and Methods :The basic design of the DIC and DRRS was to build an digital image database of radiation therapy Patient records for a more efficient and timely flow of critical image information throughout the department. This system is a submit of comprehensive radiation oncology management system (C-ROMS) and composed of a picture archiving and communication system (PACS), a radiotherapy information database, and a radiotherapy imaging database. The DIC and DRRS were programmed using Delphi under a Windows 95 environment and is capable of displaying the digital images of patients identification photos, simulation films, radiotherapy setup, diagnostic radiology images, gross lesion Photos, and radiotherapy Planning isodose charts with beam arrangements. Twenty-three clients in the department are connected by Ethernet (10 Mbps) to the central image server (Sun Ultra-sparc 1 workstation). Results :From the introduction of this system in February 1998 through December 1999, we have accumulated a total of 15,732 individual images for 2,556 patients. We can organize radiation therapy in a 'paperless' environment in 120 patients with breast cancer. Using this system, we have succeeded in the prompt, accurate, and simultaneous access to patient care information from multiple locations throughout the department. This coordination has resulted in improved operational efficiency within the department. Conclusion :The authors believe that the DIC and DRRS has contributed to the improvement of radiation oncology department efficacy as well as to time and resource savings by providing necessary visual information throughout the department conveniently and simultaneously. As a result, we can also achieve the 'paperless' and 'filmless' practice of radiation oncology with this system.

  • PDF

Climate Change by Global Warming and Its Effects on Production Efficiency of Lactating Dairy Cows in Korea : a Simulation Modeling Approach (지구온난화에 따른 국내 기후변화와 젖소 착유우의 생산효율에 미치는 영향 평가 : 모델 시뮬레이션을 이용한 접근)

  • Lee, Jung-Jin;Lee, Jun-Sung;Kim, Jong-Nam;Seo, Ja-Keum;Jo, Nam-Chul;Park, Seong-Min;Ki, Kwang-Seok;Seo, Seong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.711-723
    • /
    • 2013
  • The objectives of this study were to access climate change by global warming in Korea, and to investigate its effects on production efficiency of lactating dairy cows. Two regions, Daegu and Daekwanryung, were selected to represent a warm and a cold area, respectively. Time-series analyses on meteorological records for 25 years (from January 1, 1988 to December 31, 2012) revealed significant and different climate changes in two regions. In the warm area there has been a significant (P<0.05) increase in low temperature during the summer, which can cause heat stress to the animal. On the other hand, a decrease in low temperature during the winter was observed in the cold region (P<0.01), and cold stress in winter can thus be an issue in this region. Simulations using a model integrated the Korean feeding standard for dairy cattle and the environmental effect module of Cornell Net Carbohydrate and Protein System, indicated that a reduction in feed efficiency can be a problem during the winter in the cold region while during the summer in the warm area. We conclude that the effect of climate change by global warming varies in different areas in Korea and a region-specific management strategy should be developed in order to maintain productivity, health and welfare of lactating dairy cows.

Location Service Modeling of Distributed GIS for Replication Geospatial Information Object Management (중복 지리정보 객체 관리를 위한 분산 지리정보 시스템의 위치 서비스 모델링)

  • Jeong, Chang-Won;Lee, Won-Jung;Lee, Jae-Wan;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.985-996
    • /
    • 2006
  • As the internet technologies develop, the geographic information system environment is changing to the web-based service. Since geospatial information of the existing Web-GIS services were developed independently, there is no interoperability to support diverse map formats. In spite of the same geospatial information object it can be used for various proposes that is duplicated in GIS separately. It needs intelligent strategies for optimal replica selection, which is identification of replication geospatial information objects. And for management of replication objects, OMG, GLOBE and GRID computing suggested related frameworks. But these researches are not thorough going enough in case of geospatial information object. This paper presents a model of location service, which is supported for optimal selection among replication and management of replication objects. It is consist of tree main services. The first is binding service which can save names and properties of object defined by users according to service offers and enable clients to search them on the service of offers. The second is location service which can manage location information with contact records. And obtains performance information by the Load Sharing Facility on system independently with contact address. The third is intelligent selection service which can obtain basic/performance information from the binding service/location service and provide both faster access and better performance characteristics by rules as intelligent model based on rough sets. For the validity of location service model, this research presents the processes of location service execution with Graphic User Interface.

A Study on the Online Newspaper Archive : Focusing on Domestic and International Case Studies (온라인 신문 아카이브 연구 국내외 구축 사례를 중심으로)

  • Song, Zoo Hyung
    • The Korean Journal of Archival Studies
    • /
    • no.48
    • /
    • pp.93-139
    • /
    • 2016
  • Aside from serving as a body that monitors and criticizes the government through reviews and comments on public issues, newspapers can also form and spread public opinion. Metadata contains certain picture records and, in the case of local newspapers, the former is an important means of obtaining locality. Furthermore, advertising in newspapers and the way of editing in newspapers can be viewed as a representation of the times. For the value of archiving in newspapers when a documentation strategy is established, the newspaper is considered as a top priority that should be collected. A newspaper archive that will handle preservation and management carries huge significance in many ways. Journalists use them to write articles while scholars can use a newspaper archive for academic purposes. Also, the NIE is a type of a practical usage of such an archive. In the digital age, the newspaper archive has an important position because it is located in the core of MAM, which integrates and manages the media asset. With this, there are prospects that an online archive will perform a new role in the production of newspapers and the management of publishing companies. Korea Integrated News Database System (KINDS), an integrated article database, began its service in 1991, whereas Naver operates an online newspaper archive called "News Library." Initially, KINDS received an enthusiastic response, but nowadays, the utilization ratio continues to decrease because of the omission of some major newspapers, such as Chosun Ilbo and JoongAng Ilbo, and the numerous user interface problems it poses. Despite these, however, the system still presents several advantages. For example, it is easy to access freely because there is a set budget for the public, and accessibility to local papers is simple. A national library consistently carries out the digitalization of time-honored newspapers. In addition, individual newspaper companies have also started the service, but it is not enough for such to be labeled an archive. In the United States (US), "Chronicling America"-led by the Library of Congress with funding from the National Endowment for the Humanities-is in the process of digitalizing historic newspapers. The universities of each state and historical association provide funds to their public library for the digitalization of local papers. In the United Kingdom, the British Library is constructing an online newspaper archive called "The British Newspaper Archive," but unlike the one in the US, this service charges a usage fee. The Joint Information Systems Committee has also invested in "The British Newspaper Archive," and its construction is still ongoing. ProQuest Archiver and Gale NewsVault are the representative platforms because of their efficiency and how they have established the standardization of newspapers. Now, it is time to change the way we understand things, and a drastic investment is required to improve the domestic and international online newspaper archive.

Digital Humanities, and Applications of the "Successful Exam Passers List" (과거 합격자 시맨틱 데이터베이스를 활용한 디지털 인문학 연구)

  • LEE, JAE OK
    • (The)Study of the Eastern Classic
    • /
    • no.70
    • /
    • pp.303-345
    • /
    • 2018
  • In this article, how the Bangmok(榜目) documents, which are essentially lists of successful passers for the civil competitive examination system of the $Chos{\breve{o}}n$ dynasty, when rendered into digitalized formats, could serve as source of information, which would not only lets us know the $Chos{\breve{o}}n$ individuals' social backgrounds and bloodlines but also enables us to understand the intricate nature that the Yangban network had, will be discussed. In digitalized humanity studies, the Bangmok materials, literally a list of leading elites of the $Chos{\breve{o}}n$ period, constitute a very interesting and important source of information. Based upon these materials, we can see how the society -as well as the Yangban community- was like. Currently, all data inside these Bangmok lists are rendered in XML(eXtensible Makrup Language) format and are being served through DBMS(Database Management System), so anyone who would want to examine the statistics could freely do so. Also, by connecting the data in these Bangmok materials with data from genealogy records, we could identify an individual's marital relationship, home town, and political affiliation, and therefore create a complex narrative that would be effective in describing that individual's life in particular. This is a graphic database, which shows-when Bangmok data is punched in-successful passers as individual nodes, and displays blood and marital relations in a very visible way. Clicking upon the nodes would provide you with access to all kinds of relationships formed among more than 90 thousand successful passers, and even the overall marital network, once the genealogical data is input. In Korea, since 2005 and through now, the task of digitalizing data from the Civil exam Bangmok(Mun-gwa Bangmok), Military exam Bangmok (Mu-gwa Bangmok), the "Sa-ma" Bangmok and "Jab-gwa" Bangmok materials, has been completed. They can be accessed through a website(http://people.aks.ac.kr/index.aks) which has information on numerous famous past Korean individuals. With this kind of source of information, we are now able to extract professional Jung-in figures from these lists. However, meaningful and practical studies using this data are yet to be announced. This article would like to remind everyone that this information should be used as a window through which we could see not only the lives of individuals, but also the society.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.