• Title/Summary/Keyword: Access Network Selection

Search Result 139, Processing Time 0.028 seconds

A Handoff Improvement Method for AP Choose Guarantee Network Performance of Mobile Node in Wireless LAN Systems (무선랜 시스템에서 모바일 노드의 네트워크 성능을 보장하는 AP 선택을 위한 핸드오프 개선기법)

  • Kim, Dong-Geun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.55-63
    • /
    • 2010
  • On Handoff, existing AP search has chosen one of various APs according to signal strength. However IEEE 802.11 uses Medium Access method with CSMA/CA(Carrier Sensing Multiple Access /Collision Avoidance) that competes to obtain a channel by sharing common medium. For that reason, network performance is heavily affected by the number of nodes and network congestion aside from signal strength. Consequently, in this paper we propose the method that choose one AP which ensures more improved network performance and set up a link, reflecting AP network information in Handoff area, on Handoff in the process of AP selection. We also demonstrate through simulation that it gets maximum performance even in the wireless network which many users concurrently access to, and it has considerable effects on aspects of resources and network management by distribution of users.

Research for Adaptive Wireless AP Profile selection via Efficient network connection of Android System-based (안드로이드 시스템 기반의 적응적 무선 AP 프로파일 선택을 통한 효율적 네트워크 연결에 관한 연구)

  • Back, Jong-Kyung;Han, Kyung-Sik;Sonh, Seung-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.632-634
    • /
    • 2012
  • In order for the connection to the wireless network from the list of priorities of the wireless AP to AP profile automatic connection by selecting the preferred method to register a profile, which is determined at the time of the change, the user does not respond to the demands of the part. In this study, the frequency of the user's access in accordance with the wireless AP, and by creating a profile, the user needs to meet with regard to network access adaptive research.

  • PDF

A Multi-Attribute Intuitionistic Fuzzy Group Decision Method For Network Selection In Heterogeneous Wireless Networks Using TOPSIS

  • Prakash, Sanjeev;Patel, R.B.;Jain, V.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5229-5252
    • /
    • 2016
  • With proliferation of diverse network access technologies, users demands are also increasing and service providers are offering a Quality of Service (QoS) to satisfy their customers. In roaming, a mobile node (MN) traverses number of available networks in the heterogeneous wireless networks environment and a single operator is not capable to fulfill the demands of user. It is crucial task for MN for selecting a best network from the list of networks at any time anywhere. A MN undergoes a network selection situation frequently when it is becoming away from the home network. Multiple Attribute Group Decision (MAGD) method will be one of the best ways for selecting target network in heterogeneous wireless networks (4G). MAGD network selection process is predominantly dependent on two steps, i.e., attribute weight, decision maker's (DM's) weight and aggregation of opinion of DMs. This paper proposes Multi-Attribute Intuitionistic Fuzzy Group Decision Method (MAIFGDM) using TOPSIS for the selection of the suitable candidate network. It is scalable and is able to handle any number of networks with large set of attributes. This is a method of lower complexity and is useful for real time applications. It gives more accurate result because it uses Intuitionistic Fuzzy Sets (IFS) with an additional parameter intuitionistic fuzzy index or hesitant degree. MAIFGDM is simulated in MATLAB for its evaluation. A comparative study of MAIFDGM is also made with TOPSIS and Fuzzy-TOPSIS in respect to decision delay. It is observed that MAIFDGM have low values of decision time in comparison to TOPSIS and Fuzzy-TOPSIS methods.

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Pazhayakandathil, Sindhu;Sukumaran, Deepak Kayiparambil;Koodamannu, Abdul Hameed
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.626-636
    • /
    • 2019
  • A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.

A Handover Management Scheme Based on User-Preferences and Network-Centric Approach

  • Khan, Murad;Park, Gisu;Cho, Wooseong;Seong, Gihyuk;Han, Kijun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.344-357
    • /
    • 2015
  • With the increase in a number of access technologies and data rates, a continuous connection among different networks is demand of the future wireless networks. In the last decade, user connectivity among different access networks remained a challenging job. Therefore, in this article, we proposed a user-centric and user-perspective based network selection mechanism for fast handover management in heterogeneous wireless networks. The proposed scheme selects the most appropriate network among available networks on the basis of resources i.e. cost, data rate, and link quality. Initially, we load the Media Independent Information Service (MIIS) with the information of cost and data rate provided by different network operators. Similarly, Mobile Node (MN) is also loaded with the user preferred cost and data rate for different applications. The MN obtains the information of cost and data rate from MIIS server upon a predefined threshold, and make a decision for handover according to its current cost and data rate. Furthermore, we employ an optimal threshold mechanism for initiation of the handover execution phase to minimize false handover indications. The proposed scheme is based on a survey for network selection and its implementation in C programming language to validate its performance and accuracy. The simulation result shows that the proposed scheme performs superior then the schemes present in the current literature.

Server Selection Algorithm of Mobile Host for Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 이동 호스트의 서버 선택 알고리즘)

  • Kim Seonho;Yoon Miyoun;Shin Yongtae
    • The KIPS Transactions:PartA
    • /
    • v.11A no.6
    • /
    • pp.413-418
    • /
    • 2004
  • According as computer hardware became smaller and its performing power became improved due to the developed computer technology, clients demand more powerful accessibility to various information through getting the information at every time and every place. These needs led to the Ubiquitous computing technology which makes it possible to have access to a specific information regardless of clients' physical location. In this paper, we propose an approach that mobile host can get data from proper contents server by applying Contents Distributing Network to wireless network. By simulation, this paper proves that this approach can Improve performance by using contents server selection in wireless network. This research will contribute to realizing the Ubiquitous computing technology.

Channel Coding Based Physical Layer Security for Wireless Networks (채널 부호화를 통한 물리계층 무선네트워크 보안기술)

  • Asaduzzaman, Asaduzzaman;Kong, Hyung Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.57-70
    • /
    • 2008
  • This paper introduces a new paradigm of physical layer security through channel coding for wireless networks. The well known spread spectrum based physical layer security in wireless network is applicable when code division multiple access (CDMA) is used as wireless air link interface. In our proposal, we incorporate the proposed security protocol within channel coding as channel coding is an essential part of all kind of wireless communications. Channel coding has a built-in security in the sense of encoding and decoding algorithm. Decoding of a particular codeword is possible only when the encoding procedure is exactly known. This point is the key of our proposed security protocol. The common parameter that required for both encoder and decoder is generally a generator matrix. We proposed a random selection of generators according to a security key to ensure the secrecy of the networks against unauthorized access. Therefore, the conventional channel coding technique is used as a security controller of the network along with its error correcting purpose.

  • PDF

The Study on the Upsteam Signal Analysis of the HFC Access Network (고품질 양방항 서비스를 위한 HFC망 상향대역 신호분석에 관한 연구)

  • Jang, M.J.;Hyun, H.D.;Ryu, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.564-566
    • /
    • 2000
  • To provide more noiseless upstream service on the HFC(Hybrid-Fiber Coaxial) Access Network, we should conduct upstream band analysis and have related operation skill. In this paper, we studied the upstream signal measurement to get goof transmission quality, effective operation and maintenance, also showed the method of noise analysis and that of upstream band frequency selection. Finally we tested the signal in the field and showed the analyzed result.

  • PDF

Estimating the Effects of Multipath Selection on Concurrent Multipath Transfer

  • Wang, Jingyu;Liao, Jianxin;Wang, Jing;Li, Tonghong;Qi, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1406-1423
    • /
    • 2014
  • Multi-mode device which combines multiple access technologies into a device will offer more cost-effective solution than a sole access implementation. Its concurrent multipath transfer (CMT) technology can transmit media flows over multiple end-to-end paths simultaneously, which is essential to select at least two paths from all available paths. At real networks, different paths are likely to overlap each other and even share bottleneck, which can weaken the path diversity gained through CMT. Spurred by this observation, it is necessary to select multiple independent paths as much as possible to avoid underlying shared bottleneck between topologically joint paths. Recent research in this context has shown that different paths with shared bottleneck can weaken the path diversity gained through CMT. In our earlier work, a grouping-based multipath selection (GMS) mechanism is introduced and developed. However, how to estimating the selection is still to be resolved. In this paper, we firstly introduce a Selection Correctness Index (SCI) to evaluate the correctness of selection results in actual CMT experiment. Therefore, this metric is helpful to discuss and validate the accuracy of the output paths. From extensive experiments with a realized prototype, the proposed scheme provides better evaluation tool and criterion in various network conditions.