• Title/Summary/Keyword: Access Network Selection

Search Result 139, Processing Time 0.025 seconds

사업자 사전 선택제 도입 사례와 시사점

  • 유영상
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2002.11a
    • /
    • pp.45-57
    • /
    • 2002
  • Since a new entrant in the telecommunications market requires time in order to construct its own network, a requirement on the incumbent operator to implement carrier selection and pre-selection can enable a new entrant to immediately attract customers and earn revenue. Carrier selection can normally be accomplished in two ways, on a call-by-call basis or through carrel pre-selection. Call-by-call selection allows customers to choose a new entrant rather than the incumbent carrier using a specific code designated to the new carrier each time a call is made. Carrier Pre-Selection, on the other hand, allows customers directly connect to the network of one provider to have access automatically to another company's services when they pick up the phone to make certain types of calls. The carrier pre-selection option is generally considered to be a second regulatory step following the implementation of the call-by-call carrier selection option. Carrier pre-selection with the ability to override on a call-by-call basis for long distance, international, local, and fixed-to-mobile calls has now been implemented in many EU countries. This paper attempts to identify the issues in introducing CPS and to draw policy implications from other countries' experiences.

  • PDF

Adaptive Resource Allocation for MC-CDMA and OFDMA in Reconfigurable Radio Systems

  • Choi, Yonghoon
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.953-959
    • /
    • 2014
  • This paper studies the uplink resource allocation for multiple radio access (MRA) in reconfigurable radio systems, where multiple-input and multiple-output (MIMO) multicarrier-code division multiple access (MC-CDMA) and MIMO orthogonal frequency-division multiple access (OFDMA) networks coexist. By assuming multi-radio user equipment with network-guided operation, the optimal resource allocation for MRA is analyzed as a cross-layer optimization framework with and without fairness consideration to maximize the uplink sum-rate capacity. Numerical results reveal that parallel MRA, which uses MC-CDMA and OFDMA networks concurrently, outperforms the performance of each MC-CDMA and OFDMA network by exploiting the multiuser selection diversity.

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

A Survey of Self-optimization Approaches for HetNets

  • Chai, Xiaomeng;Xu, Xu;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1979-1995
    • /
    • 2015
  • Network convergence is regarded as the development tendency of the future wireless networks, for which self-organization paradigms provide a promising solution to alleviate the upgrading capital expenditures (CAPEX) and operating expenditures (OPEX). Self-optimization, as a critical functionality of self-organization, employs a decentralized paradigm to dynamically adapt the varying environmental circumstances while without relying on centralized control or human intervention. In this paper, we present comprehensive surveys of heterogeneous networks (HetNets) and investigate the enhanced self-optimization models. Self-optimization approaches such as dynamic mobile access network selection, spectrum resource allocation and power control for HetNets, etc., are surveyed and compared, with possible methodologies to achieve self-optimization summarized. We hope this survey paper can provide the insight and the roadmap for future research efforts in the self-optimization of convergence networks.

Priority Based Interface Selection for Overlaying Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1009-1017
    • /
    • 2010
  • Offering of different attractive opportunities by different wireless technologies trends the convergence of heterogeneous networks for the future wireless communication system. To make a seamless handover among the heterogeneous networks, the optimization of the power consumption, and optimal selection of interface are the challenging issues. The access of multi interfaces simultaneously reduces the handover latency and data loss in heterogeneous handover. The mobile node (MN) maintains one interface connection while other interface is used for handover process. However, it causes much battery power consumption. In this paper we propose an efficient interface selection scheme including interface selection algorithms, interface selection procedures considering battery power consumption and user mobility with other existing parameters for overlaying networks. We also propose a priority based network selection scheme according to the service types. MN‘s battery power level, provision of QoS/QoE and our proposed priority parameters are considered as more important parameters for our interface selection algorithm. The performances of the proposed scheme are verified using numerical analysis.

Survey on IEEE 802.11 DCF Game Theoretic Approaches (IEEE 802.11 DCF에서의 게임 이론적 접근방법 소개)

  • Choi, Byeong-Cheol;Kim, Jung-Nyeo;Ryu, Jae-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.240-242
    • /
    • 2007
  • The game theoretic analysis in wireless networks can be classified into the jamming game of the physical layer, the multiple access game of the medium access layer, the forwarder's dilemma and joint packet forwarding game of the network layer, and etc. In this paper, the game theoretic analysis about the multiple access game that selfish nodes exist in the IEEE 802.11 DCF(Distributed Coordination Function) wireless networks is addressed. In this' wireless networks, the modeling of the CSMA/CA protocol based DCF, the utility or payoff function calculation of the game, the system optimization (using optimization theory or convex optimization), and selection of Pareto-optimality and Nash Equilibrium in game strategies are the important elements for analyzing how nodes are operated in the steady state of system. Finally, the main issues about the game theory in the wireless network are introduced.

  • PDF

Maximizing Network Utilization in IEEE 802.21 Assisted Vertical Handover over Wireless Heterogeneous Networks

  • Pandey, Dinesh;Kim, Beom Hun;Gang, Hui-Seon;Kwon, Goo-Rak;Pyun, Jae-Young
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.771-789
    • /
    • 2018
  • In heterogeneous wireless networks supporting multi-access services, selecting the best network from among the possible heterogeneous connections and providing seamless service during handover for a higher Quality of Services (QoSs) is a big challenge. Thus, we need an intelligent vertical handover (VHO) decision using suitable network parameters. In the conventional VHOs, various network parameters (i.e., signal strength, bandwidth, dropping probability, monetary cost of service, and power consumption) have been used to measure network status and select the preferred network. Because of various parameter features defined in each wireless/mobile network, the parameter conversion between different networks is required for a handover decision. Therefore, the handover process is highly complex and the selection of parameters is always an issue. In this paper, we present how to maximize network utilization as more than one target network exists during VHO. Also, we show how network parameters can be imbedded into IEEE 802.21-based signaling procedures to provide seamless connectivity during a handover. The network simulation showed that QoS-effective target network selection could be achieved by choosing the suitable parameters from Layers 1 and 2 in each candidate network.

Channel Prediction-Based Channel Allocation Scheme for Multichannel Cognitive Radio Networks

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • Cognitive radio (CR) has been proposed to solve the spectrum utilization problem by dynamically exploiting the unused spectrum. In CR networks, a spectrum selection scheme is an important process to efficiently exploit the spectrum holes, and an efficient channel allocation scheme must be designed to minimize interference to the primary network as well as to achieve better spectrum utilization. In this paper, we propose a multichannel selection algorithm that uses spectrum hole prediction to limit the interference to the primary network and to exploit channel characteristics in order to enhance channel utilization. The proposed scheme considers both the interference length and the channel capacity to limit the interference to primary users and to enhance system performance. By using the proposed scheme, channel utilization is improved whereas the system limits the collision rate of the CR packets.

Energy-Efficient Cooperative Medium Access Control (MAC) Protocol for Wireless Sensor Networks

  • Ahmed, Mohammad Helal Uddin;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.267-268
    • /
    • 2011
  • Recent research activities in cooperative communication focus on achieving energy efficiency and reliability. Relay selection strategy for cooperative communication improves the performance significantly. However, due to imbalance consumption of power, network might die earlier and more than 90% energy remains unused. In this paper, we provide a framework of an energy-efficient medium access control protocol that minimizes these problems and improves energy efficiency.