• Title/Summary/Keyword: Acceptance model

Search Result 1,771, Processing Time 0.027 seconds

The effect of COVID-19 characteristics and transmission risk concerns on smart learning acceptance: Focusing on the application of the integrated model of ISSM and HBM (코로나-19의 특징과 전파위험 걱정이 스마트 러닝 수용에 미치는 영향: ISSM과 HBM의 통합 모형 적용을 중심으로)

  • Pyo, GyuJin;Kim, Yang Sok;Noh, Mijin;Han, Mu Moung Cho;Rahman, Tazizur;Son, Jaeik
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.57-70
    • /
    • 2021
  • As COVID-19 spreads, people's interest in smart learning that can do non-face-to-face learning is increasing nowadays. In this study, we aim to empirically analyze how users' thoughts on COVID-19 and the information quality and system quality of smart learning systems affect users' acceptance of smart learning and examine the effect of perceived sensitivity and severity of COVID-19 on the satisfaction and use of smart learning through concerns about the risk of transmission. In addition, we examined the influence of information quality composed of content quality and interaction quality and system quality composed of system accessibility and functionality on the use of smart learning through user satisfaction. To verify the validity of the proposed model, we conducted a survey on 334 users with experience in using smart learning, and performed the analysis using Smart PLS 3.0. According to the analysis results, among information quality and system quality, only functionality has a positive (+) effect on the satisfaction of smart learning, and satisfaction has a positive (+) effect on the usage behavior. However, it is found that accessibility among system quality do not affect satisfaction, and concern about the risk of transmission has a negative effect on satisfaction. This study can provide meaningful guidelines to researchers when researching smart learning to support students' learning in a pandemic situation of a new infectious disease, such as COVID-19. It will also be able to provide useful implications for educational institutions and companies related to smart learning.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

A Model for Health Promoting Behaviors in Late-middle Aged Woman (중년후기 여성의 건강증진행위 모형구축)

  • Park, Chai-Soon
    • Women's Health Nursing
    • /
    • v.2 no.2
    • /
    • pp.298-331
    • /
    • 1996
  • Recent improvements in living standard and development in medical care led to an increased interest in life expectancy and personal health, and also led to a more demand for higher quality of life. Thus, the problem of women's health draw a fresh interest nowadays. Since late-middle aged women experience various physical and socio-psychological changes and tend to have chronic illnesses, these women have to take initiatives for their health control by realizing their own responsibility. The basic elements for a healthy life of these women are understanding of their physical and psychological changes and acceptance of these changes. Health promoting behaviors of an individual or a group are actions toward increasing the level of well-being and self-actualization, and are affected by various variables. In Pender's health promoting model, variables are categorized into cognitive factors(individual perceptions), modifying factors, and variables affecting the likelihood for actions, and the model assumes the health promoting behaviors are affected by cognitive factors which are again affected by demographic factors. Since Pender's model was proposed based on a tool broad conceptual frame, many studies done afterwards have included only a limited number of variables of Pender's model. Furthermore, Pender's model did not precisely explain the possibilities of direct and indirect paths effects. The objectives of this study are to evaluate Pender's model and thus propose a model that explains health promoting behaviors among late-middle aged women in order to facilitate nursing intervention for this group of population. The hypothetical model was developed based on the Pender's health promoting model and the findings from past studies on women's health. Data were collected by self-reported questionnaires from 417 women living in Seoul, between July and November 1994. Questionnaires were developed based on instruments of Walker and others' health promotion lifestyle profile, Wallston and others' multidimensional health locus of control, Maoz's menopausal symptom check list and Speake and others' health self-rating scale. IN addition, items measuring self-efficacy were made by the present author based on past studies. In a pretest, the questionnaire items were reliable with Cronbach's alpha ranging from .786 to .934. The models for health promoting behaviors were tested by using structural equation modelling technique with LISREL 7.20. The results were summarized as follows : 1. The overall fit of the hypothetical model to the data was good (chi-square=4.42, df=5, p=.490, GFI=.995, AGFI=.962, RMSR=.024). 2. Paths of the model were modified by considering both its theoretical implication and statistical significance of the parameter estimates. Compared to the hypothetical model, the revised model has become parsimonious and had a better fit to the data (chi-square =4.55, df=6, p=.602, GFI=.995, AGFI=.967, RMSR=.024). 3. The results of statistical testing were as follows : 1) Family function internal health locus of control, self-efficacy, and education level exerted significant effects on health promoting behaviors(${\gamma}_{43}$=.272, T=3.714; ${\beta}_[41}$=.211, T=2.797; ${\beta}_{42}$=.199, T=2.717; ${\gamma}_{41}$=.136, T=1.986). The effect of economic status, physical menopausal symptoms, and perceived health status on health promoting behavior were insignificant(${\gamma}_{42}$=.095, T=1.456; ${\gamma}_{44}$=.101, T=1.143; ${\gamma}_{43}$=.082, T=.967). 2) Family function had a significance direct effect on internal health locus of control (${\gamma}_{13}$=.307, T=3.784). The direct effect of education level on internal health locus of control was insignificant(${\gamma}_{11}$=-.006, T=-.081). 3) The directs effects of family functions & internal health locus of control on self-efficacy were significant(${\gamma}_{23}$=.208, T=2.607; ${\beta}_{21}$=.191, T=2.2693). But education level and economic status did not exert a significant effect on self-efficacy(${\gamma}_{21}$=.137, T=1.814; ${\beta}_{22}$=.137, T=1.814; ${\gamma}_{22}$=.112, T=1.499). 4) Education level had a direct and positive effect on perceived health status, but physical menopausal symptoms had a negative effect on perceived health status and these effects were all significant(${\gamma}_{31}$=.171, T=2.496; ${\gamma}_{34}$=.524, T=-7.120). Internal health locus and self-efficacy had an insignificant direct effect on perceived health status(${\beta}_{31}$=.028, T=.363; ${\beta}_{32}$=.041, T=.557). 5) All predictive variables of health promoting behaviors explained 51.8% of the total variance in the model. The above findings show that health promoting behaviors are explained by personal, environmental and perceptual factors : family function, internal health locus of control, self-efficacy, and education level had stronger effects on health promoting behaviors than predictors in the model. A significant effect of family function on health promoting behaviors reflects an important role of the Korean late-middle aged women in family relationships. Therefore, health professionals first need to have a proper evaluation of family function in order to reflect the family function style into nursing interventions and development of strategies. These interventions and strategies will enhance internal health locus of control and self-efficacy for promoting health behaviors. Possible strategies include management of health promoting programs, use of a health information booklets, and individual health counseling, which will enhance internal health locus of control and self-efficacy of the late-middle aged women by making them aware of health responsibilities and value for oneself. In this study, an insignificant effect of physical menopausal symptoms and perceived health status on health promoting behaviors implies that they are not motive factors for health promoting behaviors. Further analytic researches are required to clarify the influence of physical menopausal symptoms and perceived health status on health promoting behaviors with-middle aged women.

  • PDF

A Study for Strategy of On-line Shopping Mall: Based on Customer Purchasing and Re-purchasing Pattern (시스템 다이내믹스 기법을 활용한 온라인 쇼핑몰의 전략에 관한 연구 : 소비자의 구매 및 재구매 행동을 중심으로)

  • Lee, Sang-Gun;Min, Suk-Ki;Kang, Min-Cheol
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.91-121
    • /
    • 2008
  • Electronic commerce, commonly known as e-commerce or eCommerce, has become a major business trend in these days. The amount of trade conducted electronically has grown extraordinarily by developing the Internet technology. Most electronic commerce has being conducted between businesses to customers; therefore, the researches with respect to e-commerce are to find customer's needs, behaviors through statistical methods. However, the statistical researches, mostly based on a questionnaire, are the static researches, They can tell us the dynamic relationships between initial purchasing and repurchasing. Therefore, this study proposes dynamic research model for analyzing the cause of initial purchasing and repurchasing. This paper is based on the System-Dynamic theory, using the powerful simulation model with some restriction, The restrictions are based on the theory TAM(Technology Acceptance Model), PAM, and TPB(Theory of Planned Behavior). This article investigates not only the customer's purchasing and repurchasing behavior by passing of time but also the interactive effects to one another. This research model has six scenarios and three steps for analyzing customer behaviors. The first step is the research of purchasing situations. The second step is the research of repurchasing situations. Finally, the third step is to study the relationship between initial purchasing and repurchasing. The purpose of six scenarios is to find the customer's purchasing patterns according to the environmental changes. We set six variables in these scenarios by (1) changing the number of products; (2) changing the number of contents in on-line shopping malls; (3) having multimedia files or not in the shopping mall web sites; (4) grading on-line communities; (5) changing the qualities of products; (6) changing the customer's degree of confidence on products. First three variables are applied to study customer's purchasing behavior, and the other variables are applied to repurchasing behavior study. Through the simulation study, this paper presents some inter-relational result about customer purchasing behaviors, For example, Active community actions are not the increasing factor of purchasing but the increasing factor of word of mouth effect, Additionally. The higher products' quality, the more word of mouth effects increase. The number of products and contents on the web sites have same influence on people's buying behaviors. All simulation methods in this paper is not only display the result of each scenario but also find how to affect each other. Hence, electronic commerce firm can make more realistic marketing strategy about consumer behavior through this dynamic simulation research. Moreover, dynamic analysis method can predict the results which help the decision of marketing strategy by using the time-line graph. Consequently, this dynamic simulation analysis could be a useful research model to make firm's competitive advantage. However, this simulation model needs more further study. With respect to reality, this simulation model has some limitations. There are some missing factors which affect customer's buying behaviors in this model. The first missing factor is the customer's degree of recognition of brands. The second factor is the degree of customer satisfaction. The third factor is the power of word of mouth in the specific region. Generally, word of mouth affects significantly on a region's culture, even people's buying behaviors. The last missing factor is the user interface environment in the internet or other on-line shopping tools. In order to get more realistic result, these factors might be essential matters to make better research in the future studies.

A Study on the Effects of User Participation on Stickiness and Continued Use on Internet Community (인터넷 커뮤니티에서 사용자 참여가 밀착도와 지속적 이용의도에 미치는 영향)

  • Ko, Mi-Hyun;Kwon, Sun-Dong
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.41-72
    • /
    • 2008
  • The purpose of this study is the investigation of the effects of user participation, network effect, social influence, and usefulness on stickiness and continued use on Internet communities. In this research, stickiness refers to repeat visit and visit duration to an Internet community. Continued use means the willingness to continue to use an Internet community in the future. Internet community-based companies can earn money through selling the digital contents such as game, music, and avatar, advertizing on internet site, or offering an affiliate marketing. For such money making, stickiness and continued use of Internet users is much more important than the number of Internet users. We tried to answer following three questions. Fist, what is the effects of user participation on stickiness and continued use on Internet communities? Second, by what is user participation formed? Third, are network effect, social influence, and usefulness that was significant at prior research about technology acceptance model(TAM) still significant on internet communities? In this study, user participation, network effect, social influence, and usefulness are independent variables, stickiness is mediating variable, and continued use is dependent variable. Among independent variables, we are focused on user participation. User participation means that Internet user participates in the development of Internet community site (called mini-hompy or blog in Korea). User participation was studied from 1970 to 1997 at the research area of information system. But since 1997 when Internet started to spread to the public, user participation has hardly been studied. Given the importance of user participation at the success of Internet-based companies, it is very meaningful to study the research topic of user participation. To test the proposed model, we used a data set generated from the survey. The survey instrument was designed on the basis of a comprehensive literature review and interviews of experts, and was refined through several rounds of pretests, revisions, and pilot tests. The respondents of survey were the undergraduates and the graduate students who mainly used Internet communities. Data analysis was conducted using 217 respondents(response rate, 97.7 percent). We used structural equation modeling(SEM) implemented in partial least square(PLS). We chose PLS for two reason. First, our model has formative constructs. PLS uses components-based algorithm and can estimated formative constructs. Second, PLS is more appropriate when the research model is in an early stage of development. A review of the literature suggests that empirical tests of user participation is still sparse. The test of model was executed in the order of three research questions. First user participation had the direct effects on stickiness(${\beta}$=0.150, p<0.01) and continued use (${\beta}$=0.119, p<0.05). And user participation, as a partial mediation model, had a indirect effect on continued use mediated through stickiness (${\beta}$=0.007, p<0.05). Second, optional participation and prosuming participation significantly formed user participation. Optional participation, with a path magnitude as high as 0.986 (p<0.001), is a key determinant for the strength of user participation. Third, Network effect (${\beta}$=0.236, p<0.001). social influence (${\beta}$=0.135, p<0.05), and usefulness (${\beta}$=0.343, p<0.001) had directly significant impacts on stickiness. But network effect and social influence, as a full mediation model, had both indirectly significant impacts on continued use mediated through stickiness (${\beta}$=0.11, p<0.001, and ${\beta}$=0.063, p<0.05, respectively). Compared with this result, usefulness, as a partial mediation model, had a direct impact on continued use and a indirect impact on continued use mediated through stickiness. This study has three contributions. First this is the first empirical study showing that user participation is the significant driver of continued use. The researchers of information system have hardly studies user participation since late 1990s. And the researchers of marketing have studied a few lately. Second, this study enhanced the understanding of user participation. Up to recently, user participation has been studied from the bipolar viewpoint of participation v.s non-participation. Also, even the study on participation has been studied from the point of limited optional participation. But, this study proved the existence of prosuming participation to design and produce products or services, besides optional participation. And this study empirically proved that optional participation and prosuming participation were the key determinant for user participation. Third, our study compliments traditional studies of TAM. According prior literature about of TAM, the constructs of network effect, social influence, and usefulness had effects on the technology adoption. This study proved that these constructs still are significant on Internet communities.

An Empirical Analysis on the Persistent Usage Intention of Chinese Personal Cloud Service (개인용 클라우드 서비스에 대한 중국 사용자의 지속적 사용의도에 관한 실증 연구)

  • Yu, Hexin;Sura, Suaini;Ahn, Jong-chang
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.79-93
    • /
    • 2015
  • With the rapid development of information technology, the ways of usage have changed drastically. The ways and efficiency of traditional service application to data processing already could not satisfy the requirements of modern users. Nowadays, users have already understood the importance of data. Therefore, the processing and saving of big data have become the main research of the Internet service company. In China, with the rise and explosion of 115 Cloud leads to other technology companies have began to join the battle of cloud services market. Although currently Chinese cloud services are still mainly dominated by cloud storage service, the series of service contents based on cloud storage service have been affirmed by users, and users willing to try these new ways of services. Thus, how to let users to keep using cloud services has become a topic that worth for exploring and researching. The academia often uses the TAM model with statistical analysis to analyze and check the attitude of users in using the system. However, the basic TAM model obviously already could not satisfy the increasing scale of system. Therefore, the appropriate expansion and adjustment to the TAM model (i. e. TAM2 or TAM3) are very necessary. This study has used the status of Chinese internet users and the related researches in other areas in order to expand and improve the TAM model by adding the brand influence, hardware environment and external environments to fulfill the purpose of this study. Based on the research model, the questionnaires were developed and online survey was conducted targeting the cloud services users of four Chinese main cities. Data were obtained from 210 respondents were used for analysis to validate the research model. The analysis results show that the external factors which are service contents, and brand influence have a positive influence to perceived usefulness and perceived ease of use. However, the external factor hardware environment only has a positive influence to the factor of perceived ease of use. Furthermore, the perceived security factor that is influenced by brand influence has a positive influence persistent intention to use. Persistent intention to use also was influenced by the perceived usefulness and persistent intention to use was influenced by the perceived ease of use. Finally, this research analyzed external variables' attributes using other perspective and tried to explain the attributes. It presents Chinese cloud service users are more interested in fundamental cloud services than extended services. In private cloud services, both of increased user size and cooperation among companies are important in the study. This study presents useful opinions for the purpose of strengthening attitude for private cloud service users can use this service persistently. Overall, it can be summarized by considering the all three external factors could make Chinese users keep using the personal could services. In addition, the results of this study can provide strong references to technology companies including cloud service provider, internet service provider, and smart phone service provider which are main clients are Chinese users.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

Factors Influencing the Adoption of Location-Based Smartphone Applications: An Application of the Privacy Calculus Model (스마트폰 위치기반 어플리케이션의 이용의도에 영향을 미치는 요인: 프라이버시 계산 모형의 적용)

  • Cha, Hoon S.
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.7-29
    • /
    • 2012
  • Smartphone and its applications (i.e. apps) are increasingly penetrating consumer markets. According to a recent report from Korea Communications Commission, nearly 50% of mobile subscribers in South Korea are smartphone users that accounts for over 25 million people. In particular, the importance of smartphone has risen as a geospatially-aware device that provides various location-based services (LBS) equipped with GPS capability. The popular LBS include map and navigation, traffic and transportation updates, shopping and coupon services, and location-sensitive social network services. Overall, the emerging location-based smartphone apps (LBA) offer significant value by providing greater connectivity, personalization, and information and entertainment in a location-specific context. Conversely, the rapid growth of LBA and their benefits have been accompanied by concerns over the collection and dissemination of individual users' personal information through ongoing tracking of their location, identity, preferences, and social behaviors. The majority of LBA users tend to agree and consent to the LBA provider's terms and privacy policy on use of location data to get the immediate services. This tendency further increases the potential risks of unprotected exposure of personal information and serious invasion and breaches of individual privacy. To address the complex issues surrounding LBA particularly from the user's behavioral perspective, this study applied the privacy calculus model (PCM) to explore the factors that influence the adoption of LBA. According to PCM, consumers are engaged in a dynamic adjustment process in which privacy risks are weighted against benefits of information disclosure. Consistent with the principal notion of PCM, we investigated how individual users make a risk-benefit assessment under which personalized service and locatability act as benefit-side factors and information privacy risks act as a risk-side factor accompanying LBA adoption. In addition, we consider the moderating role of trust on the service providers in the prohibiting effects of privacy risks on user intention to adopt LBA. Further we include perceived ease of use and usefulness as additional constructs to examine whether the technology acceptance model (TAM) can be applied in the context of LBA adoption. The research model with ten (10) hypotheses was tested using data gathered from 98 respondents through a quasi-experimental survey method. During the survey, each participant was asked to navigate the website where the experimental simulation of a LBA allows the participant to purchase time-and-location sensitive discounted tickets for nearby stores. Structural equations modeling using partial least square validated the instrument and the proposed model. The results showed that six (6) out of ten (10) hypotheses were supported. On the subject of the core PCM, H2 (locatability ${\rightarrow}$ intention to use LBA) and H3 (privacy risks ${\rightarrow}$ intention to use LBA) were supported, while H1 (personalization ${\rightarrow}$ intention to use LBA) was not supported. Further, we could not any interaction effects (personalization X privacy risks, H4 & locatability X privacy risks, H5) on the intention to use LBA. In terms of privacy risks and trust, as mentioned above we found the significant negative influence from privacy risks on intention to use (H3), but positive influence from trust, which supported H6 (trust ${\rightarrow}$ intention to use LBA). The moderating effect of trust on the negative relationship between privacy risks and intention to use LBA was tested and confirmed by supporting H7 (privacy risks X trust ${\rightarrow}$ intention to use LBA). The two hypotheses regarding to the TAM, including H8 (perceived ease of use ${\rightarrow}$ perceived usefulness) and H9 (perceived ease of use ${\rightarrow}$ intention to use LBA) were supported; however, H10 (perceived effectiveness ${\rightarrow}$ intention to use LBA) was not supported. Results of this study offer the following key findings and implications. First the application of PCM was found to be a good analysis framework in the context of LBA adoption. Many of the hypotheses in the model were confirmed and the high value of $R^2$ (i.,e., 51%) indicated a good fit of the model. In particular, locatability and privacy risks are found to be the appropriate PCM-based antecedent variables. Second, the existence of moderating effect of trust on service provider suggests that the same marginal change in the level of privacy risks may differentially influence the intention to use LBA. That is, while the privacy risks increasingly become important social issues and will negatively influence the intention to use LBA, it is critical for LBA providers to build consumer trust and confidence to successfully mitigate this negative impact. Lastly, we could not find sufficient evidence that the intention to use LBA is influenced by perceived usefulness, which has been very well supported in most previous TAM research. This may suggest that more future research should examine the validity of applying TAM and further extend or modify it in the context of LBA or other similar smartphone apps.

  • PDF

A Study on Costume Culture Interchange Resulting from Political Factors (정치적 요인에 의한 복식문화교류에 관한 연구)

  • Yu Ju-Ri;Kim Jeong-Mee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.3 s.151
    • /
    • pp.458-469
    • /
    • 2006
  • The purpose of this study was to prove that interchange is a primary factor in costume changes through case analysis in costume culture interchange, and further, to assist in gaining understanding of costume changes of the present and the future, and therefore, in this study, cases analysis was conducted focusing on interchange resulting from political factors. In order to present theories that are able to analyse costume culture interchange, culture, cultural exchange, and costume cultures were examined, and based on the results, a costume culture interchange process model and its three steps, propagation, selection, and reinterpretation, were presented. The results of case study on costume culture interchange resulting from political factors based on the costume culture interchange process model presented are as follows. Interchanges that politically uses the possibility of expressing costume as symbols are in most cases aggressive and semi aggressive. In order to exhibit superiority of themselves, the aggressors forced their national costumes onto the receiving culture. Rather than a simple introduction of their costumes, it was an attempt to introduce they values and their ways of life. The conclusion that can be reached through such result is that interchange is an important driving force for changes in costume culture. All interchanges were not greatly affected by methods of propagation and acceptance, and resulted in fusion. Fusion is a process in which existing costume and foreign costume come together constructively to for a new costume culture therefore change in costume style is inevitable.

The Impact of Changes in Social Information Processing Mechanism on Social Consensus Making in the Information Society (정보화사회에 있어서 사회적 정보처리 메커니즘의 변화가 사회적 컨센서스 형성에 미치는 영향에 대한 연구)

  • Jin, Seung-Hye;Kim, Yong-Jin
    • Information Systems Review
    • /
    • v.13 no.3
    • /
    • pp.141-163
    • /
    • 2011
  • The advancement of information technologies including the Internet has affected the way of social information processing as well as brought about the paradigm shift to the information society. Accordingly, it is very important to study the process of social information processing over the digital media through which social information is generated, distributed, and led to social consensus. In this study, we analyze the mechanism of social information processing, identify a process model of social consensus and institutionalization of the results, and finally propose a set of information processing characteristics on the internet media. We deploy the ethnographic approach to analyze the meaning of group behavior in the context of society to analyze two major events which happened in Korean society. The formation process of social consensus is found to consist of 5 steps: suggestion of social issues, selective reflection on public opinion, acceptance of the issues and diffusion, social consensus, and institutionalization and feedback. The key characteristics of information processing in the Internet is grouped into proactive response to an event, the changes in the role of opinion leader, the flexibility of proposal and analysis, greater scalability, relevance to consensus making, institutionalization and interaction. This study contributes to the literature by proposing a process model of social information processing which can be used as the basis for analyzing the social consensus making process from the social network perspective. In addition, this study suggests a new perspective where the utility of the Internet media can be understood from the social information processing so that other disciplines including politics, communications, and management can improve the decision making performance in utilizing the Internet media.