• Title/Summary/Keyword: Acceptable Condition

Search Result 352, Processing Time 0.038 seconds

THE EFFECT OF THE CANAL IRRIGANTS ON THE ELECTRONIC WORKING LENGTH DEVICE (전자 근관장측정기 사용에 있어서 근관세척제의 사용이 측정에 미치는 영향에 관한 연구)

  • Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • Electronic working length determination is based on the electrical impedence between the root canal and the periodontal ligament Different canal irrigants with different electric conductivity may effect on the accuracy of the electronic mechanism. 0.9% Saline, 2.5% NaOCl and 3% $H_2O_2$ were evaluated either in wet or in dry condition. The results were as follows. 1. The electrical resistance mearured by Impedence Meter (Model #253, portland, USA) were 1 $K{\Omega}$ in 0.9% Saline, 0.1$K{\Omega}$ in 2.5% NaOCl and 48 $K{\Omega}$ in 3% $H_2O_2$. 2. Saline measured -0.57mm from the actual canal length and had significant difference. When dried with paper points, however, it measured -0.25mm demonstrating no statistical difference. 3. 2.5% NaOCl measured -4.07mm in wet and -2.26mm in dry condition and both showed significant difference from the actual canal length. 4. 3% $H_2O_2$ measured +0.02mm in wet and -0.09mm in dry canals and both appeared to be within acceptable range for the electronic working length mechanism.

  • PDF

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

The Implementation of Probabilistic Security Analysis in Composite Power System Reliability (복합전력계통 신뢰도평가의 확률론적 안전도 도입)

  • Cha, Jun-Min;Kwon, Sae-Hyuk;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

  • Kim, Young Jin;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.325-330
    • /
    • 2015
  • Performance of solid oxide fuel cells (SOFCs), in comparison with that under hydrogen fuel, were investigated under direct internal reforming conditions. Anode supported cells were fabricated with an Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode for the present work. Measurements of I-V curves and impedance were conducted with S/C (steam to carbon) ratio of ~ 2 at $800^{\circ}C$. The outlet gas was analyzed using gas chromatography under open circuit condition; the methane conversion rate was calculated and found to be ~ 90% in the case of low flow rate of methane and steam. Power density values were comparable for both cases (hydrogen fuel and internal steam reforming of methane), and in the latter case the cell performance was improved, with a decrease in the flow rate of methane with steam, because of the higher conversion rate. The present work indicates that the short-term performance of SOFCs with conventional Ni+YSZ anodes, in comparison with that under hydrogen fuel, is acceptable under internal reforming condition with the optimized fuel flow rate and S/C ratio.

Performance of U3Si-Al dispersion fuel at HANARO full-power condition

  • Chae, Heetaek;Lee, Choong Sung;Park, Jong Man;Kim, Heemoon;Kim, Yeon Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.899-906
    • /
    • 2018
  • The irradiation performance of $U_3Si$ dispersion fuel in an Al matrix, $U_3Si-Al$, under the Hi-Flux Advanced Neutron Application Reactor (HANARO) design full-power condition of 30 MW was tested for full-power qualification of the fuel. A test assembly was fabricated containing 18 fuel rods made with atomized $U_3Si$ powder manufactured at the Korea Atomic Energy Research Institute. The test assembly was irradiated for 188 full-power operation days in the HANARO subject to the normal fuel-loading scheme and achieved about 60 at% U-235 average burnup and 75 at% U-235 peak burnup. The maximum linear power of the test assembly was 98 kW/m. Nondestructive and destructive postirradiation examinations were conducted. The measured postirradiation examination data were compared with data from previous irradiations and the design criteria required for HANARO fuel. Consequently, it was concluded that in-pile performance was acceptable and fuel integrity was maintained, and the behavior satisfied the fuel design requirements.

A Noise Prediction of Floating, Production, Storage and Offloading(FPSO) (부유식 석유생산.저장.하역선박의 소음해석)

  • Kim, Young-Hyun;Kim, Dong-Hae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.307-310
    • /
    • 2000
  • Recently, the demand for the Floating, Production Storage, and Offloading facility(FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. The basic characteristics of a 343,000 DWT class FPSO which is being built in Hyundai Heavy Industries and shall be installed in offshore Angola, is almost same as that of oil carriers. However, she do not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise source contributing to the cabin noise of the accommodation, are classified into the machine in the engine room and the deckhouse, HVAC system, and the topside equipments. In general, the noise regulation for the offshore structure is much severer than that of the common commercial ships and the maximum acceptable sound pressure level of cabins is specified in 45dB(A). This paper describes the procedure of noise analysis along with its results. Noise analysis has been carried out for the case of emergency diesel generator running condition and the case of normal production condition and the results has been compared with the measurement results of the first case. Based on the results, proper countermeasures to reduce excessive noise level has been applied considering the characteristics of sources and receiver spaces and can be satisfied the specifications at all spaces.

  • PDF

Evaluation of a DDB design method for bridges isolated with triple pendulum bearings

  • Amiri, Gholamreza Ghodrati;Shalmaee, Mahdi Mohammadian;Namiranian, Pejman
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.803-820
    • /
    • 2016
  • In this study a direct displacement-based design (DDBD) procedure for a continuous deck bridge isolated with triple friction pendulum bearings (TFPB) has been proposed and the seismic demands of the bridge such as isolator's displacement and drift of piers obtained from this procedure evaluated under two-directional near-field ground motions. The structural model used here are continuous, three-span, castin-place concrete box girder bridge with a 30-degree skew which are isolated with 9 different TFPBs. By comparing the results of DDBD method with those of nonlinear time history analysis (NTHA), it can be concluded that the proposed procedure is able to predict seismic demands of similar isolated bridges with acceptable accuracy. Results of NTHA shows that dispersion of peak resultant responses for a group of ground motions increases by increasing their average value of responses. It needs to be noted that the demands parameters calculated by the DDBD procedure are almost overestimated for stiffer soil condition, but there is some underestimation in results of this method for softer soil condition.

Numerical investigation of the unsteady flow of a hybrid CRP pod propulsion system at behind-hull condition

  • Zhang, Yuxin;Cheng, Xuankai;Feng, Liang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.918-927
    • /
    • 2020
  • Flows induced by hybrid CRP pod propulsion systems (CRP-POD) are fundamentally characterized by unsteadiness. This work presents a numerical study on the unsteady flow of a CRP-POD at behind-hull condition based on CFD (Computational Fluid Dynamics). Unsteady RANS method is adopted, coupled with SST k-u turbulence model and sliding mesh method. The propeller thrusts and torques obtained by CFD is validated by model tests and acceptable agreements are obtained. The time histories of shingle-blade loads and pressures near the hull surface are recorded for the analysis of unsteady flow features. The cases of forward propeller alone and aft propeller alone are also computed to distinguish the hull-propeller interaction and propeller-propeller interaction. The results show the blade loads of both forward and aft propellers strongly fluctuate with phase angles. For the forward propeller, the blade load fluctuation is mainly governed by the hull-propeller interaction, while the aft blade load is remarkably affected by the propeller-propeller interaction in terms of the load average and fluctuation pattern. The fields of pressure, vorticity and velocity are also analyzed to reveal the unsteady flow features.

Myelomeningocele defect reconstruction with keystone flaps: vascular rationale for the design and operative technique

  • Kushida-Contreras, Beatriz Hatsue;Gaxiola-Garcia, Miguel Angel
    • Archives of Plastic Surgery
    • /
    • v.48 no.3
    • /
    • pp.254-260
    • /
    • 2021
  • Background Myelomeningocele is a frequently seen condition at tertiary care hospitals. Its treatment involves a variety of plastic reconstructive techniques. Herein, we present a series of myelomeningocele patients treated using keystone flaps. Methods We gathered information regarding soft tissue reconstruction and the use of bilateral keystone flaps to treat myelomeningocele patients. We obtained data from clinical records and recorded the demographic characteristics of mothers and children with the condition. The size, level of defect, and complications detected during the follow-up were analyzed. Results A series of seven patients who underwent bilateral keystone flaps for myelomeningocele closure was analyzed. There were no cases of midline or major dehiscence, flap loss, necrosis, surgical site infections, or cerebrospinal fluid leakage. No revision procedures were performed. Minor complications included one case with minimal seroma and three cases with areas of peripheral dehiscence that healed easily using conventional measures. Conclusions The use of keystone flaps is an adequate option for closure of dorsal midline soft tissue defects related to myelomeningocele. This technique offers predictable results with an acceptable spectrum of complications. Robust blood flow can be predicted based upon anatomical knowledge.

MARGINAL DISCREPANCY AND RETENTION FORCE OF CONICAL TELESCOPE OUTER CROWN WITH CO-CR-TI ALLOY (Co-Cr-Ti 합금으로 제작한 conical telescope 외관의 변연적합도와 유지력에 관한 연구)

  • Jung, Hi-Chan;Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.214-225
    • /
    • 2000
  • The purpose of this study was to investigate the effects of investing conditions on the marginal discrepancy of conical telescope outer crown with Co-Cr-Ti alloy(Dentitan) and to compare the marginal discrepancy and the retention force of outer crowns using different pattern materials(plastic foil, casting wax, pattern resin). To evaluate the effects of investing conditions on the marginal discrepancy, patterns with plastic foil were invested under three different liquid/powder ratio conditions using phosphate bonded investment(Univest-nonprecious): standard, 10% decreased and 10% increased. At each liquid/powder ratio condition, metal ring was lined with single or double layers of ceramic ring liner. The marginal discrepancy of outer crown at different investing conditions was measured by ${\times}100$ compact measuring microscope(STM5, Olympus, Japan). For measurement of the marginal discrepancy and the retention force of outer crown using different pattern materials, the investing condition of 10% decreased liquid/powder ratio and double layers of ring liner was selected because this investing condition resulted in the best fit of outer crown. Marginal discrepancy was measured in the same way above and retention force on universal testing machine. Under the conditions of this study, the following conclusions were drawn: 1. The thickness of ring liner had more influence on the marginal discrepancy of outer crown than the liquid/powder ratio, and the acceptable marginal fitness could not be expected at the investing condition directed by investment manufacturer 2. There were no differences in the marginal discrepancy of outer crown among three different pattern materials(P>0.05). 3. Casting wax showed the greatest retention force(1640g) of outer crown, followed by pattern resin(1110g), plastic foil(820g). However, there was no significant difference between plastic foil and pattern resin(P>0.05). 4. Plastic foil showed the least variation in marginal discrepancy and retention force.

  • PDF