• Title/Summary/Keyword: Accelerative thermal degradation

Search Result 8, Processing Time 0.021 seconds

A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test (가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

A technology State of Accelerating Degradation and Life Estimation on the Traction Motor for Railway Rolling Stock (철도차량 견인전동기의 가속열화수명평가 기술현황)

  • Wang, Jong-Bae;Kim, Ki-Jun;Choi, Young-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • In this paper, the technology for accelerating degradation & life estimation on the traction motor was introduced with the stator form-winding sample coils of the 200 Class insulation system The accelerative degradation was performed in 10 cycles, which were composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of $20{\sim}160^{\circ}C$. Relationship between degradation conditions and diagnosis results were analyzed to find an dominative degradation factor at the end-life point

  • PDF

A Study on the Complex Accelerating Degradation and Condition Diagnosis of Traction Motor for Electric Railway (전기철도용 견인전동기의 복합가속열화 상태진단에 관한 연구)

  • 왕종배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • In this study, the stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the C-Class(200$\^{C}$ ) insulation system of traction motors. The complex accelerative degradation was periodically performed during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, the condition diagnosis test such as insulation resistance '||'&'||' polarization index, capacitance '||'&'||' dielectric loss and partial discharge properties were investigated in the temperature range of 20 ∼ 160$\^{C}$. Relationship among condition diagnosis tests was analyzed to find a dominative degradation factor and an insulation state at end-life point.

Fault Prediction & Reliability Estimation of the Traction Motor by the Complex Accelerating Degradation and Condition Diagnosis (견인전동기의 복합가속열화 상태진단에 의한 고장예측 및 신뢰성 평가)

  • 왕종배;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.763-766
    • /
    • 2000
  • In this paper, stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the 200 Class insulation system of traction motors. The complex accelerative degradation was performed by periods during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of 20∼160$^{\circ}C$. Relationship among condition diagnosis test was analyzed to find an dominative degradation factor and an insulation state at end-life point.

  • PDF

A Study on the Electrical Characteristics by Accelerating Degradation for Traction Motor in Urban Transit EMU (전동차용 견인전동기의 가속열화에 의한 전기적 특성 연구)

  • Park, H.J.;Kim, G.D.;Jang, D.U.;Choi, J.S.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1235-1237
    • /
    • 2002
  • Insulation system(200 class} for stator coil is designed for traction motor with VVVF inverter. Sample coils for stator of the traction motor were tested by accelerative thermal degradation which composed of heat, vibration, moisture, and overvoltage apply. Reliability and expected life were evaluated on the insulation system for 200 class traction motor. After aging of 10 cycles, tan ${\delta}$ increased with voltage. This result is due to increase of internal defects and change of insulation structure.

  • PDF

A Study on the Accelerating Degradation for AC Traction Motor in Urban Transit EMU (전동차 AC견인전동기의 가속열화에 관한 연구)

  • Park, Hyun-June;Kim, Gil-Dong;Byun, Yoon-Sub;Han, Young-Jae;Jang, Dong-Uk;Wang, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1257-1259
    • /
    • 2001
  • In this paper, the diagnosis method for AC traction motor is to reduce their maintenance loads. We tried to apply this method to maintenance of traction motor in railway vehicle. Sample coils for stator of traction motor were tested by accelerative thermal degradation which composed of heat, vibration, moisture, and overvoltage applying. Reliability and expected life were evaluated on the insulation system for 200 class traction motor.

  • PDF

A Study on the Insulation Degradation Properties for Stator Form-wound Winding of Traction Motors in Urban Transit E.M.U (철도차량용 견인전동기의 형권 고정자 코일에 대한 절연열화 특성 연구)

  • Kim, K.J.;Chae, S.H.;Wang, J.B.;Park, H.J.;Lee, I.W.;Hur, I.G.;Ha, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.452-454
    • /
    • 1999
  • In this paper, sample coils for stator form-wound winding of traction motor were made for the accelerative thermal degradation composed of heat, vibration, moisture and overvoltage. In progress of test periods, diagnosis tests such as insulation resistance, dielectric loss and partial discharge were investigated. Reliability and expected life were evaluated on the insulation system for 200 class traction motor considering various environmental stress.

  • PDF

Condition Diagnosis by the Complex Accelerating Degradation for fault Prediction & estimation of reliability on the traction motor - Insulation Resistance & Polarization Index Properties (견인전동기의 고장예측 및 신뢰성 평가를 위한 복합가속열화 상태진단 - 절연저항 및 성극지수 특성 연구)

  • Wang, Jong-Bae;Byun, Yoon-Sub;Baek, Jong-Hyen;Park, Hyun-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1374-1376
    • /
    • 2000
  • In this paper, sample coils for stator form-wound winding of traction motor were tested by the accelerative thermal degradation, which composed of heat, vibration, moisture and overvoltage applying. Reliability and expected life were evaluated on the insulation system for 200 class traction motor. After aging of 10 cycles, insulation resistance and PI properties were investigated as diagnosis tests in the range of $20{\sim}160^{\circ}C$. Analysis of polarization properties was performed on the base of do current-time change.

  • PDF