• 제목/요약/키워드: Acceleration time history response

검색결과 168건 처리시간 0.02초

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

원자력구조물(原子力構造物)의 지진해석(地震解析)에 사용(使用)되는 입력운동(入力運動)에 대한 고찰(考察) (Assessment of Input Motion for the Seismic Analysis of Nuclear Structures)

  • 박형기;유철수
    • 대한토목학회논문집
    • /
    • 제5권2호
    • /
    • pp.91-99
    • /
    • 1985
  • 원자력(原子力) 구조물(構造物)의 내진해석(耐震解析)에 사용(使用)되어온 입력운동(入力運動)의 가속도 크기와 지속시간(持續時間)을 조사(調査)하였다. 그 중 수치화(數値化)된 자료를 얻을 수 있었던 지속시간(持續時間) 24초(秒)인 두 개의 인공가속도(人工加速度)-시간이력곡선(時間履歷曲線)에 대하여 가속도응답(加速度應答)스펙트럼과 스펙트럼강도(强度)를 계산하여 특성(特性)을 파악하고, 지속시간(持續時間) 이외의 다른 특성(特性)이 크게 다르지 않도록 가속도(加速度) 곡선(曲線) 하나를 개선(改善)시켜 지속시간 15초(秒)의 다른 인공가속도(人工加速度)-시간이력곡선(時間履歷曲線)을 만들었다. 24초(秒)의 두 곡선(曲線)과 개선(改善)시킨 곡선(曲線)을 각각 원자력(原子力) 5, 6호계(號繼) 부품냉각건물(部品冷却建物)의 모델에 입력(入力)시켜 지진해석(地震解析)을 수행(遂行)하였다. 24초(秒)의 원(原) 곡선(曲線)과 이로부터 개선(改善)시킨 곡선(曲線)을 사용(使用)한 결과(結果)는 거의 동일(同一)하였으나, 24초(秒) 두 곡선(曲線) 사용(使用)한 결과(結果)는 그 경향(傾向)은 같으나 큰 차이(差異) 보였다. 또한 본(本) 연구(硏究)에서 사용(使用)한 모델에 개선(改善)시킨 곡선(曲線)의 사용(使用)이 컴퓨터 이용시간(利用時間)을 약 절반으로 줄일 수 있음을 알았다.

  • PDF

지진하중에 대한 복층 배럴볼트 시스템의 동적거동에 대한 연구 (Research on Dynamic Behavior of Double-Layer Barrelvault Arch Systems Subjected to Earthquake Loadings)

  • 신지욱;이기학;정찬우;강주원
    • 한국공간구조학회논문집
    • /
    • 제9권1호
    • /
    • pp.87-94
    • /
    • 2009
  • 본 논문은 지진하중에 대한 복층 배럴볼트 시스템의 동적거동을 조사한 것이다. 시간이력해석에 따른 지진에 대한 거동을 조사하기 위하여 6개의 다른 개각과 각 개각에 대하여 0.5초 간격으로 4개의 추가적인 고유 진동수가 고려되었다. 전체 24개의 해석모델들이 컴퓨터 해석 프로그램인 MIDAS Gen.에 의해 설계되었고 5%의 감쇠비가 고려된 3개의 지진에 대하여 시간이력해석이 수행되었다. 지진이 적용될 때 수평방향에 대한 응답반응만 고려하는 라멘 구조물과는 달리 대공간 구조물의 경우 수평방향 뿐만 아니라 상하 방향의 동적거동을 고려하는 것이 중요하다. 따라서 본 연구에서는 수평방향 지진(H)과 수직방향 지진(V)에 대하여 X-, Y- 그리고 Z- 방향에 대한 동적거동 특성에 대하여 평가하였다. 개각과 진동수에 따른 동적거동 특성을 파악하기 위하여 최대 응답이 나타나는 시간에서 배럴볼트 시스템의 특정 절점들에 대한 가속도 응답비를 살펴보았다. 본 논문에서 동적거동을 조사한 가장 중요한 목적은 본 연구의 최종 목적인 배럴볼트시스템에 대한 등가정적지진력을 구하는 식을 제안하기 위함이다.

  • PDF

다지점 가진을 고려한 장경간 사장교의 비선형시간이력해석 (Nonlinear Time History Analysis of Long Span Cable-Stayed Bridge Considering Multi-Support Excitation)

  • 김진일;하수복;성대정;김문영;신현목
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.655-662
    • /
    • 2011
  • 본 논문에서는 다지점 가진 시 장대교량에 대한 지진응답해석을 수행하고 설계상의 다양한 요구에 유연하게 대처하기 위해서 다지점 가진 해석에 필요한 비선형시간이력해석 알고리즘(영향계수법)을 제안하고, 이를 신뢰성있는 비선형 유한요소해석 프로그램(RCAHEST)에 추가하였다. 동일한 유한요소모델에 대해 범용 유한요소해석 프로그램 SAP2000의 Multi-support Excitation 기능을 이용하여 연구에서의 결과에 대한 비교 검증을 수행하였다. 이 연구결과를 바탕으로 인천대교에 대해서 유한요소모델링을 실시하고 다지점 가진을 고려한 비선형시간이력해석을 수행하였다. 수평변위응답의 분석 결과 시간지연이 늘어날수록 최대 수평변위가 줄어드는 것을 확인할 수 있었다. 또한 입력지진파의 최대가속도를 단계적으로 증가시키며 극한해석을 수행하여 대상 교량의 사용성을 평가하였다.

2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점 (Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake)

  • 이철호;박지훈;김태진;김성용;김동관
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

고속철도교량의 동적안정성 평가연구 (An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges)

  • 방명석;정광모
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수 (Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes)

  • 임승현;최인길;전법규;곽신영
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.