• Title/Summary/Keyword: Acceleration time

Search Result 2,049, Processing Time 0.026 seconds

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

Critical earthquake input energy to connected building structures using impulse input

  • Fukumoto, Yoshiyuki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1133-1152
    • /
    • 2015
  • A frequency-domain method is developed for evaluating the earthquake input energy to two building structures connected by viscous dampers. It is shown that the earthquake input energies to respective building structures and viscous connecting dampers can be defined as works done by the boundary forces between the subsystems on their corresponding displacements. It is demonstrated that the proposed energy transfer function is very useful for clear understanding of dependence of energy consumption ratios in respective buildings and connecting viscous dampers on their properties. It can be shown that the area of the energy transfer function for the total system is constant regardless of natural period and damping ratio because the constant Fourier amplitude of the input acceleration, relating directly the area of the energy transfer function to the input energy, indicates the Dirac delta function and only an initial velocity (kinetic energy) is given in this case. Owing to the constant area property of the energy transfer functions, the total input energy to the overall system including both buildings and connecting viscous dampers is approximately constant regardless of the quantity of connecting viscous dampers. This property leads to an advantageous feature that, if the energy consumption in the connecting viscous dampers increases, the input energies to the buildings can be reduced drastically. For the worst case analysis, critical excitation problems with respect to the impulse interval for double impulse (simplification of pulse-type impulsive ground motion) and multiple impulses (simplification of long-duration ground motion) are considered and their solutions are provided.

Comparison of various structural damage tracking techniques based on experimental data

  • Huang, Hongwei;Yang, Jann N.;Zhou, Li
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1057-1077
    • /
    • 2010
  • An early detection of structural damages is critical for the decision making of repair and replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has received considerable attention recently. The traditional time-domain analysis techniques, such as the least square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two approaches have been extended to cover the general case where some of the external excitations (inputs) are not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking of structures when some of the acceleration responses are not measured and the external excitations are not available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy, convergence and efficiency, for damage identification of structures based on experimental data obtained through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural damages will be demonstrated and compared.

Structural monitoring of wind turbines using wireless sensor networks

  • Swartz, R. Andrew;Lynch, Jerome P.;Zerbst, Stephan;Sweetman, Bert;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Monitoring and economical design of alternative energy generators such as wind turbines is becoming increasingly critical; however acquisition of the dynamic output data can be a time-consuming and costly process. In recent years, low-cost wireless sensors have emerged as an enabling technology for structural monitoring applications. In this study, wireless sensor networks are installed in three operational turbines in order to demonstrate their efficacy in this unique operational environment. The objectives of the first installation are to verify that vibrational (acceleration) data can be collected and transmitted within a turbine tower and that it is comparable to data collected using a traditional tethered system. In the second instrumentation, the wireless network includes strain gauges at the base of the structure. Also, data is collected regarding the performance of the wireless communication channels within the tower. In both turbines, collected wireless sensor data is used for off-line, output-only modal analysis of the ambiently (wind) excited turbine towers. The final installation is on a turbine with embedded braking capabilities within the nacelle to generate an "impulse-like" load at the top of the tower. This ability to apply such a load improves the modal analysis results obtained in cases where ambient excitation fails to be sufficiently broad-band or white. The improved loading allows for computation of true mode shapes, a necessary precursor to many conditional monitoring techniques.

A Study on the Assessment of Residual Life Span for Old Type Signalling Equipment (노후신호장치 잔존수명 평가에 관한 연구)

  • Shin, Ducko-Shin;Lee, Jae-Ho;Shin, Kyung-Ho;Kim, Yong-Kyu;Kang, Min-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.535-541
    • /
    • 2009
  • The reliability of control system composed of electronic parts has been studied by DoD since 1960, and has been undertaken mainly by Europe for railways. Especially in Korea, a study on reliability of signalling equipment has been taken since 2000, requiring reliability test for effective maintenance of old type signalling equipment which no longer has information on its past reliability. This study evaluates the reliability test in units of parts for old type signalling equipment; for instance, failure rate in units of parts, or failure data during operation; which was utilized without its consistent reliability monitoring and analysis data for over 20 years. Also, reliability change at this point in time has been estimated by using residual life span function, and a model which can evaluate the possibility of extended operation through stress acceleration test has been developed. This model will be utilized to establish future maintenance policy for train operating company's operation on old type signalling equipment.

U-Healthcare & Medical Information System of Status and Operative Challenges for Integrated Medical Information System (U-Healthcare 및 의료정보시스템의 현황과 통합의료정보시스템을 위한 운영과제)

  • Kim, Bo-Soo
    • Journal of Digital Convergence
    • /
    • v.9 no.5
    • /
    • pp.65-75
    • /
    • 2011
  • For the latest information and communication technology convergence with related technology to integrate all the systems has been developed in the form. In this era as well as the flow of the healthcare industry in recent years many studies on the development and application has been actively. Health IT in healthcare information systems that integrate information systems that have evolved rapidly in the direction to go, and in the future it is expected to do better acceleration. In this paper, state-led ubiquitous environment for building the hospital application system and IT application services are practical and Free in the integrated health information for the patient care service strengthening to integrated medical information system proposal and design do's and At the same time the establishment of integrated health information systems plans and operational challenges presented.

A Model for Simplified 3-dimensional Analysis of High-speed Train Vehicle (TGV)-Bridge Interactions (고속철도차량(TGV)-교량 상호작용의 단순화된 3차원 해석모델)

  • 최창근;송명관;양신추
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • The simplified model for 3-dimensional analysis of vehicle-bridge interactions is presented in this study. By using the analysis model which includes the eccentricity of axle loads and the effect of the torsional forces acting on the bridge, the more accurate analysis results of the behavior of the bridge can be obtained. The equations of kinetic energy, potential energy and damping energy are expressed by degrees of freedom of the vehicle and the bridge. And then by applying Lagrange's equations of motion, the equations of motion of the vehicle and the bridge are obtained. By deriving the equations of forces acting on the bridge considering the vehicle-bridge vertical interactions and also by identifying the position of vehicle as time goes by, mass matrix, stiffness matrix, damping matrix and load vector of vehicle-bridge system are constructed in accordance with the position of vehicles. Then using Newmark's β-method(average acceleration), the equations of motion for the total vehicle bridge system are solved.

  • PDF

Shock Attenuation Mechanism in Drop Landing According to the Backpack Weight Changes (드롭랜딩 시 backpack 중량 변화에 따른 충격 흡수 기전)

  • Choi, Chi-Sun;Nam, Ki-Jeong;Shin, In-Sik;Seo, Jung-Suk;Eun, Seon-Deok;Kim, Suk-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.25-35
    • /
    • 2006
  • The purpose of this study was to investigate the shock attenuation mechanisms while varying the loads in a backpack during drop landing. Ten subjects (age: $22.8{\pm}3.6$, height: $173.5{\pm}4.3$, weight: $70.4{\pm}5.2$) performed drop landing under five varying loads (0, 5kg. 10kg. 20kg. 30kg). By employing two cameras (Sony VX2100) the following kinematic variables (phase time, joint rotational angle and velocity of ankle, knee and hip) were calculated by applying 2D motion analysis. Additional data, i.e. max vertical ground force (VGRF) and acceleration, was acquired by using two AMTI Force plates and a Noraxon Inline Accelerometer Sensor. Through analysing the power spectrum density (PSD), drop landing patterns were classified into four groups and each group was discovered to have a different shock attenuation mechanism. The first pattern that appeared at landing was that the right leg absorbed most of the shock attenuation. The second pattern to appear was that subject quickly transferred the load from the right leg to the left leg as quickly as possible. Thus, this illustrated that two shock attenuation mechanisms occurred during drop landing under varying load conditions.

Analysis of golf putting for Elite & Novice golfers Using Jerk Cost Function (저크비용함수를 이용한 골프 숙련자와 초보자간의 퍼팅 동작 분석)

  • Lim, Young-Tae;Choi, Jin-Sung;Han, Young-Min;Kim, Hyung-Sik;Yi, Jeong-Han;Jun, Jae-Hun;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The purpose of this study was to identify critical parameters of a putting performance using jerk cost function. Jerk is the time rate of change of acceleration and it has been suggested that a skilled performance is characterized by decreased jerk magnitude. Four elite golfers($handicap{\leq}2$) and 4 novice golfers participated in this study for the comparison. The 3D kinematic data were collected for each subject performing 5 trials of putts for each of these distances (random order): 1m, 3m, 5m The putting stroke was divided into 3 phases such as back swing. down swing and follow-through. In this study, it was assumed that there exist smoothness difference between elite and novice golfers during putting. The distance and jerk-cost function of Putting stroke for each phase were analyzed Results showed that there was a significant difference in jerk cost function at putter toe (at media-lateral direction) and at the center of mass between two groups by increasing putting distance. From these it could be concluded that jerk can be used as a kinematic parameter for distinguishing elite and novice golfers.