• 제목/요약/키워드: Acceleration characteristics

검색결과 1,421건 처리시간 0.026초

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제40권1호
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구 (Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car)

  • 김기훈;유영면;임종순
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.

광투과식 매연 측정법을 이용한 소형 디젤 차량의 무부하 급가속 조건에서의 매연 배출 특성 (Characteristics of Smoke Emissions from Light Duty Diesel Vehicles Using Light Extinction Smoke Measurement Method under free Acceleration Test Mode)

  • 강일호;이충훈
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.1-8
    • /
    • 2012
  • Characteristics of smoke emission in light duty diesel vehicles was investigated according to the year of production, engine displacement volume, and mileage. The smoke emission was measured using light extinction smoke measurement method under free acceleration test mode. Total number of the tested vehicles was 180. The year of production of the tested vehicles distributed from 2002 to 2007. The displacement volumes of the tested vehicles were categorized as 2-liter, 2.5-liter, 2.7-liter, and 3-liter. The mileage of the tested vehicles distributed from 20,000 km to 400,000 km. The more recent in the year of production of the tested vehicles did not show clearly lower in smoke emissions. Smoke emission showed different values according to driver's pedal pushing pattern. Also, smoke emission peak for each free acceleration test initially increased and reach a maximum of the peak values. Afterwards, the smoke peak gradually decreased as number of test increased. A new guide line was proposed to determine the smoke value from the light duty diesel vehicles based on smoke emission peak patterns which were obtained with several repeated free acceleration tests.

C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성 (Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration)

  • 안태윤;라정민;박준형;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

교량 진동특성 분석을 위한 실측 가속도의 적분 (Integration of Measured Acceleration to Determine the Vibration Characteristics of Bridges)

  • 이선구;이성우
    • 전산구조공학
    • /
    • 제9권4호
    • /
    • pp.107-115
    • /
    • 1996
  • 변위응답은 교량구조의 진동특성을 결정하는데 중요한 인자 중의 하나이다. 계측된 가속도 데이타를 진동수 영역에서 적분하여 변위응답을 경제적이고 합리적으로 구할 수 있다. 이를 위해 계측된 가속도 데이타를 이산화하기 위해 적절한 표본추출 진동수가 제시되었다. 캔틸레버 보를 이용한 실내시험에서 직접 계측된 변위와 적분된 변위는 서로 잘 일치하였다. 평가된 변위응답으로부터 구한 모우드 형상도 해석치와 근접하므로 개발된 방법은 실제로 효율적으로 사용될 수 있음을 입증하였다.

  • PDF

대형트럭 다판 스프링과 테이퍼 판스프링의 진동특성 비교 (Comparison of Vibration Characteristics of a Multi-leaf Spring and a Tapered Leaf Spring of a Heavy Truck)

  • 오재윤;문일동
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.270-276
    • /
    • 2005
  • This paper develops the flexible computational model of a heavy truck by interfacing the frame modeled as a flexible body to the heavy truck's computational model composed of rigid bodies. The frame is modeled by the finite element method. Three torsional modes and three bending modes of the frame are considered for the interface of the heavy truck's computational model. The actual vehicle test is conducted off road with a velocity of 20km/h. The vertical accelerations at the cab and front axle are measured in the test. For the verification of the developed computational model, the measured vertical acceleration profiles are compared with the simulation results of the heavy truck's flexible computational model. E grade irregular road profile of ISO is used as an excitation input in the simulation. The verified flexible computational model is used to compare the vibration characteristics of a front suspension system having a multi-leaf spring and that having a tapered leaf spring. The comparison results show that the front suspension having a tapered leaf spring has a higher vertical acceleration at the front axle but a lower vertical acceleration at the cab than the suspension system having a multi-leaf spring.

가속차로 길이에 따른 합류행태 및 합류부 교통특성 분석 (Analysis of Merging Behaviors and Traffic Characteristics on Freeway Merging Areas According to Acceleration Lane Length)

  • 이승준;박재범;강정규
    • 대한교통학회지
    • /
    • 제23권8호
    • /
    • pp.53-66
    • /
    • 2005
  • 본 연구는 고속도로 가속차로 길이에 따른 합류부의 교통특성과 지정체양상 및 혼잡수준을 분석하여 가속차로의 길이가 합류부 교통소통상태에 미치는 영향을 파악하는데 목적이 있다. 이를 위해 가속차로의 길이가 확연히 다른 두 합류부(수원IC 및 신갈JC)에 대하여 합류부(가속차로구간)를 여러 소구간으로 나누어 카메라로 교통자료를 수집하였으며, 합류부 상하류 구간 조사하였다. 조사자료의 분석에 있어서는 교통류 특성변수인 교통량, 속도, 밀도자료를 사용하였고, 합류부에서 합류의 영향과 지정체양상을 파악하기 위하여 밀도변화량이란 새로운 척도를 도입하여 분석하였다. 가속차로의 길이가 긴 신갈JC의 혼잡도가 수원IC에 비하여 확연히 심하게 나타났으며, 그 원인과 특징 등을 확인할 수 있었다.

볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성 (Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports)

  • 서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

비구조요소의 내진설계를 위한 등가정적 층가속도 평가 (Evaluation of Equivalent-Static Floor Acceleration for Seismic Design of Non-Structural Elements)

  • 전수찬;이철호;배창준;김성용
    • 대한건축학회논문집:구조계
    • /
    • 제36권3호
    • /
    • pp.121-128
    • /
    • 2020
  • In this paper, the ASCE 7 equivalent static approach for seismic design of non-structural elements is critically evaluated based on the measured floor acceleration data, theory of structural dynamics, and linear/nonlinear dynamic analysis of three-dimensional building models. The analysis of this study on the up-to-date database of the instrumented buildings in California clearly reveals that the measured database does not well corroborate the magnitude and the profile of the floor acceleration as proposed by ASCE 7. The basic flaws in the equivalent static approach are illustrated using elementary structural dynamics. Based on the linear and nonlinear dynamic analyses of three-dimensional case study buildings, it is shown that the magnitude and distribution of the PFA (peak floor acceleration) can significantly be affected by the supporting structural characteristics such as fundamental period, higher modes, structural nonlinearity, and torsional irregularity. In general, the equivalent static approach yields more conservative acceleration demand as building period becomes longer, and the PFA distribution in long-period buildings tend to become constant along the building height due to the higher mode effect. Structural nonlinearity was generally shown to reduce floor acceleration because of its period-lengthening effect. Torsional floor amplification as high as 250% was observed in the building model of significant torsional irregularity, indicating the need for inclusion of the torsional amplification to the equivalent static approach when building torsion is severe. All these results lead to the conclusion that, if permitted, dynamic methods which can account for supporting structural characteristics, should be preferred for rational seismic design of non-structural elements.