• Title/Summary/Keyword: Acceleration amplification rate

Search Result 3, Processing Time 0.014 seconds

The Experimental Study on Seismic Capacity of 154 kV & 345 kV Main Transformer Bushings (154 kV 및 345 kV 주변압기 부싱의 내진성능 시험 연구)

  • Hwang, Kyeong Min;Ham, Kyung Won;Kim, Gyeong Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • In this study, seismic performance of bushings and their connection parts was analyzed by performing shaking table tests for various types of bushings widely used as auxiliary equipment of main transformers in domestic substations. As a result of the seismic tests of five types of 154 kV bushings according to the manufacturers, all the bushings secured the structural integrity even at the acceleration of 1.4 g and it was found that leakage of insulating oil didn't occur. Also, the average acceleration amplification rate at the upper part of the bushings was about 2.5 to 3.0 times higher than the lower one. On the other hand, when a representative 345 kV bushing was subjected to the seismic test, the structural integrity was secured even at 1.0 g acceleration similar to the design earthquake load level, but in this test, leakage of insulating oil occurred. However, when a stiffener restricting the connection of the bushing is installed in the same 345 kV bushing, the displacement of the bushing connection is controlled and the stiffener prevent the oil from leaking even at the acceleration of the designed seismic level.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Dynamic Response Analysis of Twisted High-Rise Structures by Plane Rotation Angle (비틀어진 형상(Twisted) 고층 구조물의 평면 회전 각도별 동적 응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.105-112
    • /
    • 2021
  • In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.