• Title/Summary/Keyword: Acceleration Switch

Search Result 21, Processing Time 0.023 seconds

Analysis of Braking Response Time for Driving Take Based on Tri-axial Accelerometer

  • Shin, Hwa-Kyung;Lee, Ho-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.59-63
    • /
    • 2010
  • Purpose: Driving a car is an essential component of daily life. For safe driving, each driver must perceive sensory information and respond rapidly and accurately. Brake response time (BRT) is a particularly important factor in the total stopping distance of a vehicle, and therefore is an important factor in traffic accident prevention research. The purpose of the current study was (1) to compare accelerometer. BRTs analyzed by three different methods and (2) to investigate possible correlations between accelerometer-BRTs and foot switch-BRTs, which are measured method using a foot switch. Methods: Eighteen healthy subjects participated in this study. BRT was measured with either a tri-axial accelerometer or a footswitch. BRT with a tri-axial accelerometer was analyzed using three methods: maximum acceleration time, geometrical center, and center of maximum and minimum acceleration values. Results: Both foot switch-BRTs and accelerometer-BRTs were delayed. ANOVA for accelerometer BRTs yielded significant main effects for axis and analysis, while the interaction effect between axis and analysis was not significant. Calculating the Pearson correlation between accelerometer-BRT and foot switch-BRT, we found that maximum acceleration time and center of maximum and minimum acceleration values were significantly correlated with foot switch-BRT (p<0.05). The X axis of the geometrical center was significantly correlated with foot switch-BRTs (p<0.05), but Y and Z axes were not (p>0.05). Conclusion: These findings suggest that the maximum acceleration time and the center of maximum and minimum acceleration value are significantly correlated with foot switch-BRTs.

Sensitivity Analysis of the Zigzag Switch under Acceleration and Centrifugal Forces (가속력과 원심력을 받는 지그잭 스위치의 민감도 해석)

  • 김경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1067-1072
    • /
    • 1996
  • Sensitivity analysis of the cylindrical zigzag cams under acceleration and centrifugal forces is performed. A Lagrangian method is used to determine the mechanism constant of zigzag track, And the equation of motion for cylindrical zigzag cam under rectangular pulse is derived by the governing equations of a single spring mass system. The ratio of the drive force tn resisting force is derived by angular acceleration, centrifugal force and setback force on the operation of the munition. The theoretical sensitivity curves for 3 models are analyzed. And experiments for 3 models are conducted to check safe and functional zone. Zigzag cam types can be satisfied all major design requirements for switch system of munition.

  • PDF

Design and Performance Analysis of Lateral Type MEMS Inertial Switch (수평 구동형 MEMS 관성 스위치 설계 및 성능해석)

  • Gim, Hakseong;Jang, Seung-gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.523-528
    • /
    • 2020
  • A lateral type MEMS inertial switch was designed on the same principle as spring-mass system. The MEMS switch is used for arming mechanism of the arm-fire device by sensing the applied acceleration. We analyzed the switching capability of the MEMS switch under various acceleration conditions via performance model. Simulation results showed that the MEMS switch works very well at 10 g when the applied acceleration slope does not exceed 10 g/msec. On the other hand, the threshold operating acceleration level simulation exceeded the requirement (10±2 g) due to the width and length of the spring by considering 10% tolerance of the design values. Design modification of doubling the width of the spring, which is difficult to reduce less than 10% tolerance in fabrication process, was proposed after confirming the simulation results comply the requirement.

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.

Studies on MEMS Inertial Switch Applicable to the Ignition SAU(Safe-Arm-Unit) of Propulsion System (추진기관 점화안전장치에 적용 가능한 MEMS 관성 스위치 연구)

  • Jang, Seung-Gyo;Jung, Hyung-Gyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.126-129
    • /
    • 2010
  • MEMS(micro electro-mechanical systems) inertial switch which is applicable to the ignition Safe-Arm- Unit of propulsion system is devised. The MEMS inertial switch is designed according to the general design procedure for conventional mechanical elements. Unlikely conventional MEMS accelerometer, threshold inertial switching mechanism is adopted which makes a MEMS element an abrupt switching in a certain acceleration level. By comparing the design data and test results of the specimen a small discrepancy in switching acceleration level is found which is presumably due to the nonlinear characteristics of the beam spring and the flexure hinge which are the main parts of the MEMS inertial switch.

  • PDF

Study on High Voltage Switch Using IGBT (IGBT를 사용한 고전압 스위치에 관한 연구)

  • Park, S.S.;Kim, S.C.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.556-558
    • /
    • 1996
  • PLS 2-GeV linac has 11 sets of high power klystron-modulator system as a main RF source for the beam acceleration. The modulators can provide 200-MW peak pulsed power(400-kV, 500-A) with a pulse width of $7.5{\mu}s$(ESW), a maximum pulse repetition rate of 120-Hz at the full power level. The DC power supply provides a 25-kV, 7-Adc and the charging system consists of a charging inductor, charging capacitor, and the diode for reverse current protection. The charged PFN voltage by a LC resonant charging method has two times of the DC high voltage and the pulsed power is delivered to the load by a thyratron switch. To reduced the press of high voltage lit thyratron switch, the command charging is the best method. In this article, the high voltage switch for the command charging method is tested to the start work and the system is presented with the experiment results of the trigger and operational characteristics.

  • PDF

A Study for Improvement of Speed Response Characteristic in Four-Switch Three-Phase BLDC Motor (4스위치 3상 BLDC 전동기의 속도응답특성 향상에 대한 연구)

  • Lee J .H.;Kim T. S.;Kim K. W.;Hyun D. S.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.641-645
    • /
    • 2004
  • This paper presents a new speed control method using the acceleration feedforward compensation and using the disturbance torque estimate method. The proposed method improve transition response characteristic of system and has been a robust characteristic in the four-switch three-phase motor drive system in which the gain of speed controller cannot be made large enough. The simulation results prove the validity of the proposed method.

  • PDF

Design, Fabrication and tTsting of a Microswitch Using Snap-through Buckling Phenomenon (스냅스루 좌굴을 이용한 미소스위치의 설계, 제작 및 실험)

  • Go, Jeung-Sang;Cho, Young-Ho;Kwak, Byung-Man;Park, Kwan-Hum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.481-487
    • /
    • 1996
  • A snapping-beam microswitch has been designed, fabricated and tested. From a design analysis, necessary and sufficient conditions for a snap-through switching fouction have been derived for a clamped shallow beam. The necessary condition has resulted in a geometric relation, in which the ratio of beam thickness to initial beam deflection plays a key role in the snapping ability. The sufficient condition for the snapping action has been obtained as a function of the inertia force due to applied acceleration, and the electrostatic force, adjustable by an inter-electrode voltage. For experimental investigations, a set of microbeams of silicon dioxide/$P^+$silicon bimorphs have been fabricated. Geometric size and mechanical behavior of each material film have been measured from on-chip test structures. Estimated and measured characteristics of the fabricated devices are compared.

MEASUREMENT OF $CO_2$ CONCENTRATION AND A/F RATIO USING FAST NDIR ANALYZER ON TRANSIENT CONDITION OF SI ENGINE

  • Lee, S.W.;Kim, W.S.;Lee, J.H.;Park, J.I.;Yoo, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.385-390
    • /
    • 2006
  • A fast response $CO_2$ analyzer has been developed to study transient characteristics on an SI engine. The analyzer has the delay time of 4.5 ms and time constant of 2.8 ms, which is fast enough to measure $CO_2$ concentration on a transient condition. Wide range of A/F(Air/Fuel) ratio can be estimated using the analyzer with an additional switch type oxygen sensor. The results of measurement of $CO_2$ concentration and A/F ratio on a transient condition including rapid acceleration/deceleration and EGR(Ehxaust Gas Recirculation) on/off are presented and compared with a commercial exhaust gas analyzer and UEGO(Universial Exhaust Gas Oxyzen) sensor.

A Study on Closed Loop Control of a Linear Induction Motor Using General Purpose Frequency Inverter (범용 인버터에 의한 선형유도 전동기의 폐루프 제어 방식에 관한 연구)

  • Oh, Sung-Chul;Kim, Eun-Soo;Kim, Yong-Joo;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.641-644
    • /
    • 1991
  • Constant slip frequency operation of linear infliction motor is essential for the stable levitation. Control scheme for the constant slip frequency with general purpose frequency inverter is proposed, Speed sensing scheme with proximitity switch for the speed feedback is also proposed. Optimal slip frequency, at which normal force is equal to 0, is selected by the experiment. This slip frequency is a comand to the controller. It shows good characteristic during acceleration and deceleration.

  • PDF