• 제목/요약/키워드: Accelerated life data

검색결과 222건 처리시간 0.026초

Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models

  • Kuk, Myeong Uk;Kim, Jae Won;Lee, Young-Sam;Cho, Kyung A;Park, Joon Tae;Park, Sang Chul
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.210-217
    • /
    • 2019
  • The maintenance of mitochondrial function is closely linked to the control of senescence. In our previous study, we uncovered a novel mechanism in which senescence amelioration in normal aging cells is mediated by the recovered mitochondrial function upon Ataxia telangiectasia mutated (ATM) inhibition. However, it remains elusive whether this mechanism is also applicable to senescence amelioration in accelerated aging cells. In this study, we examined the role of ATM inhibition on mitochondrial function in Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) cells. We found that ATM inhibition induced mitochondrial functional recovery accompanied by metabolic reprogramming, which has been known to be a prerequisite for senescence alleviation in normal aging cells. Indeed, the induced mitochondrial metabolic reprogramming was coupled with senescence amelioration in accelerated aging cells. Furthermore, the therapeutic effect via ATM inhibition was observed in HGPS as evidenced by reduced progerin accumulation with concomitant decrease of abnormal nuclear morphology. Taken together, our data indicate that the mitochondrial functional recovery by ATM inhibition might represent a promising strategy to ameliorate the accelerated aging phenotypes and to treat age-related disease.

온도-비열 가속모형을 적용한 유압호스 조립체의 수명특성 연구

  • 이기천;김형의;조유희;심성보
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.281-288
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipments such as construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships, or they are used as pipes in oil pressure circuit. However, as the traditional measure for estimating life under the influence of various external factors incurs hardship in terms of time and expenses, it is essential to take accelerated life test by choosing the factor that suits the usage condition of the test object. The objective of the this study is to propose a acceleration model that takes both temperature and pressure without flexing condition into consideration. The life that is calculated by the equation for evaluating life and the test data show similar slopes as a result of comparing and analyzing the equation for evaluating life that is obtained in this research and the test data, which illustrates that they estimate life similarly, and the proposed equation is proved to be an accelerated life equation that presents the test results.

  • PDF

수정 아레니우스 모형에서 가족수명시험에 대한 조건부 신뢰구간 (Conditional Confidence Intervals for Accelerated Life Testing in Modified Arrhenius Model)

  • 박병구
    • 품질경영학회지
    • /
    • 제25권3호
    • /
    • pp.1-10
    • /
    • 1997
  • In the context of accelerated life tests, procedures are given for estimating the parameters in the modified Arrhenius model and for estimating mean life at a given future stress level. The conditional confidence intervals are obtained by conditioning on ancillary statistics and pivotal quantity. Using the data of Tobias and Trindada(1986), we illustrate conditional confidence interval for parameters under use condition in the modified Arrhenius model.

  • PDF

산업용 청소기 모터의 가속수명시험 (Accelerated Life Test of Industrial Cleaner Motor)

  • 엄학용;이기천;장무성;박종원;이용범
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: In this study, the life of the motor is investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Methods: The accelerating stress factor of the accelerated life test is a voltage, which can increase the number of revolutions of the motor to accelerate the brush wear due to the friction between the brush and the commutator. Also, the accelerating stress level was determined after determining the maximum allowable level of the voltage through the preliminary test. Results: The motor failure time at each accelerating stress level was predicted by regression analysis with brush wear length as performance degradation data. The main failure mode, which is brush wear, of the motor was reproduced by this test. The shape parameter of the Weibull distribution was confirmed to be the same statistically at all accelerating stress levels by the likelihood ratio test. Conclusion: The life of the motor was investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Through the accelerating test method of the cleaner motor, various life expectancy and life expectancy of the acceleration factor are predicted.

전기이중층커패시터의 가속열화시험 (An Accelerated Degradation Test of Electric Double-Layer Capacitors)

  • 정재한;김명수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.

STS301L 가스용접이음재의 가속수명에측에 관한 연구 (1. Plug and Ring type) (A study on Accelerated Life Prediction of Gas Welded joint of STS301L (1. Plug and Ring type))

  • 백승엽;배동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1355-1360
    • /
    • 2008
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}P-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

  • PDF

STS301L 가스용접이음재의 가속수명예측 자동화에 관한 연구 (Plug and Ring Type) (A Study on Accelerated Life Prediction Automation of Gas Welded Joint of STS301L (Plug and Ring Type))

  • 백승엽;손일선
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.1-8
    • /
    • 2011
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistical reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

풍력발전기용 Yaw gearbox의 가속 수명시험에 관한 연구 (A Study on the Accelerated Life Test of Yaw Gearbox for Wind Turbine)

  • 이용범;이기천;이종직;임신열
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.16-21
    • /
    • 2024
  • The yaw gearbox is a key device in a wind power generator that improves power generation efficiency by rotating hundreds of tons (400 to 600 tons) of nacelle so that the blade reaches 90 degrees in the wind direction. Recently, installation sites have been advancing from land to sea as they have become super-large at (8-12) MW to increase the economic feasibility of wind power generators and utilize excellent wind resources, and the target life of large wind power generators is 25 to 30 years. The yaw gearbox of 6 to 12 sets is installed in a very complex place inside the nacelle on the tower with parallels, and it is important to secure the reliability of the yaw gearbox because if a failure occurs after installation, it costs tens to hundreds of times the price of a new product to restore. In this study, equivalent loads were calculated by analyzing failure mode and field data, accelerated life test conditions were established, and a test device was constructed to perform the accelerated life tests and performance tests to ensure the reliability of the gearbox.

머시닝센터 주축 고장예측에 관한 연구 (A Study on Diagnosis and Prognosis for Machining Center Main Spindle Unit)

  • 이태홍
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.134-140
    • /
    • 2016
  • Main Spindle System has effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, main spindle unit in Machine tools are often cases where damage occurs do not meet the design life due to driving in harsh environments. This is when excessive maintenance and repair of machine tools or for damage stability has resulted in huge economic losses. Therefore, this studying propose a method of accelerated life test for diagnosing and prognosis the state of life assessment main spindle system. Time status monitoring of diagnostic data - through the analysis of the frequency band signals were carried out inside the main spindle bearing condition monitoring and fault diagnosis.

유니버설조인트 시험방식을 이용한 치과용 임플란트의 피로시험 및 가속수명시험에 관한 연구 (Study on the Fatigue Test and the Accelerated Life Test for Dental Implant using Universal-Joint Test Type)

  • 도경훈;이석진;김종미;김성민
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2017
  • Purpose : This paper is a comparative analysis results of the fatigue test for dental implants and accelerated life test by using a static type loading device commonly used in Korea and a dynamic type loading device (universal-joint) recommended by FDA. Methods : Fatigue tests of dental implant is based on ISO 14801 and classified into static load test and dynamic load test. The tests were carried out on three test specimens by four load stress steps under each loading device. For analysis on failure mode such as crack, fracture and permanent deformation of test specimens, we used X-ray three-dimensional computed tomography on test specimens before and after the fatigue tests. The design of the accelerated life test was based on the analysis results of the fatigue life data obtained from the dynamic load test and the statistical analysis software (Minitab ver.15) was used to analyze the appropriate life distribution. Results : As a result of the fatigue tests and the accelerated life tests at same acceleration condition under each test method, the fatigue life under the dynamic type loading device (universal-joint) was shorter than when static type loading device was applied. Conclusion : This paper can be used as a reference when the universal-joint type loading device for implants fatigue test is applied as ISO 14801.