• Title/Summary/Keyword: Acaulospora spinosa

Search Result 5, Processing Time 0.235 seconds

Vesicular-arbuscular mycorrhizal Fungi found at the horticultural and cultivated Plants (원예식물 및 재배식물에서 발견된 내생균근)

  • Lee, Sang-Sun;Ka, Kang-Hyeon;Lee, Sog-Koo;Paek, Kee-Yoeup
    • The Korean Journal of Mycology
    • /
    • v.19 no.3
    • /
    • pp.186-202
    • /
    • 1991
  • Out of the 36 species (22 families) of horticultural plants collected from the horticultural shop around Cheong Ju, the 17 plant species (47.2%) were infected with VA-mycorrhizae in the root tissues. Also, the chlamydospores or azygospores of VA-mycorrhizae were identified (two genera, three species); Acaulospora spinosa, Glomus etinucatum, and G. tortusom. VA-mycorhizae found from the cultivated plants around Korea National University of Education and other area were also identified (four genera, six species); A. myriocarpa, Gigaspora decipiens, G. caledonium, G. glomerulatum, G. microcarpum, and Scutellospora calospora.

  • PDF

Density of Arbuscular mycorrhizal spore of plastic film house soil in Yeongnam area and characterestics of AMF in vitro (영남지역 시설재배지에 분포하는 Arbuscular 균근균의 포자 밀도 및 기내조건에서의 포자발아와 균사생장 특성)

  • Park, Hyang-Mee;Nam, Min-Hee;Kang, Hang-Won;Lee, Jae-Saeng;Ko, Jee-Yeon;Kang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • This study was conducted to obtain the basic data on agricultural use of arbuscular mycorrhizal fungi(AMF) in salt accumulated plastic film house soil by evaluating the density of AMF spores in plastic film house in Yeong Nam area and surface sterility condition, germination rate of AMF spores, and hyphal growth in vitro. The density of AMF spores in plastic film house soils was highest in the site of water melon, and those of cucumber, melon, hot pepper sites were followed in order. The number of AMF was in the range of 101-207 per 100 g dry soil. With decreasing the ratio of bacteria to fungi(B/F), the population density of AMF was increased, and available $P_2O_5$ content of soil was significantly correlated to the population densities of AMF($r=0.416^*$). The surface sterility rate and spore germination of AMF isolated in plastic film house soil were more than 50% in 2% chloramin T and 2% chloramin T + antibiotic and 0.5% NaOCl treatments. The germination rate of Gigaspora margarita in the range of initial pH 5~9 of the medium was more than 56%. Hyphal growth was increased as pH of the medium increased. However the germination rate of Acaulospora spinosa was highest in the medium of pH 9, and hyphal growth in vitro was poor and not related to pH of the medium.

  • PDF

Effect of Organic Farming on Spore Diversity of Arbuscular Mycorrhizal Fungi and Glomalin in Soil

  • Lee, Ji-Eun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.272-276
    • /
    • 2009
  • In this study, eight soil samples were collected from organic and conventional farms in a central area of South Korea. Spore communities of arbuscular mycorrhizal fungi (AMF) and glomalin, a glycoprotein produced by AMF, were analyzed. Spores of Glomus clarum, G. etunicatum, G. mosseae, G. sp., Acaulospora longula, A. spinosa, Gigaspora margarita, and Paraglomus occultum were identified at the study sites, based on morphological and molecular characteristics. While Acaulospora longula was the most dominant species in soils at organic farms, Paraglomus occultum was the most dominant species in soils at conventional farms. Species diversity and species number in AMF communities found in soils from organic farms were significantly higher than in soils from conventional farms. Glomalin was also extracted from soil samples collected at organic and conventional farms and was analyzed using both Bradford and enzyme-linked immunosorbent assays. The glomalin content in soils from organic farms was significantly higher than in soils from conventional farms. These results indicate that agricultural practices significantly affect AMF abundance and community structure.

Biodiversity, Spore Density and Root Colonization of Arbuscular Mycorrhizal Fungi at Expressway Cut-slopes in Korea

  • Lee, Kyung Joon;Lee, Kyu Hwa;Tamolang-Castillo, Evangeline;Budi, Sri Wilarso
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.539-547
    • /
    • 2009
  • This study was conducted to investigate the arbuscular mycorrhizal fungal biodiversity, spore density and root colonization in relation to site ages at expressway cut-slopes in Korea. Stabilization of exposed surface involved soil amendments and spraying seed mixture of turf grasses and/or nitrogen-fixing shrub species. Eighteen sites were selected with varying ages (2 to 16 years). Soil samples collected in October from each site were analyzed for fungal diversity and spore counts. Fine root samples from the plants were assayed for fungal colonization. Of the total 37 plants inspected in the sites, 26 species had endomycorrhizal colonization with an average root colonization rate of 18%, and with a range from 1 to 67%. The average endomycorrhizal colonization rate of initially introduced Festuca arundinacea which became the most dominant grass in later stage showed 22.8%, while that of Lespedeza bicolor which became the most dominant woody species were 21.6%. Naturally-invading Robinia pseudoacacia showed higher colonization rate in the old sites. Although site age did not show significant effects on fungal diversity, the root colonization rates of initially introduced plants decreased with the site aging, while those of invading plants increased with aging of the sites. The soil chemical properties, pH, N, and P contents, were negatively correlated with spore density, root colonization and endomycorrhizal species diversity. A total of forty arbuscular mycorrhizal fungal species in seven genera were identified. Of the 40 species, Acaulospora lacunosa, Glomus aggregatum, Glomus constrictum, Scutellospora erythropa, and Acaulospora spinosa were the five most dominant species in the decreasing order.

Effects of Arbuscular Mycorrhiza Inoculation and Phosphorus Application on Early Growth of Hot Pepper(Capsicum annum L.) (Arbuscular mycorrhiza의 접종방법 및 인산시용량이 고추(Capsicum annum L.)의 초기생장에 미치는 영향)

  • Park, Hyang-Mee;Kang, Hang-Won;Kang, Ui-Gum;Park, Kyeong-Bae;Lee, Sang-Sun;Song, Sung-Dahl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study was conducted to examine the effects of Arbuscular Mycorrhizae inoculation and phosphorus application on early growth of hot pepper. Gigaspora margarita and Acaulospora spinosa were chosen for this investigation and inoculated into soils of different P levels by varying inoculation time and density. After treatment, some relevant growth responses of hot pepper were measured. Regardless of soil P levels, hot peppers treated with arbuscular mycorrhizal fungi had 5~34% more fresh weight than those untreated, but the effect of inoculation time and density was not different between two species. With decreased P levels, the infection rate and dependency of hot peppers increased. The content of P and K of AMF-inoculated hot peppers increased with increasing P levels, but the shoot to root ratio of those elements decreased. The results of this study showed that inoculation of AMF would be effective in promoting growth of hot pepper seedlings and increase transplant adaptation due in part to the resulted higher root development.

  • PDF