• Title/Summary/Keyword: Academic recommendation system

Search Result 43, Processing Time 0.03 seconds

Case Analysis on AI-Based Learning Assistance Systems (인공지능 기반 학습 지원 시스템에 관한 사례 분석)

  • Chee, Hyunkyung;Kim, Minji;Lee, Gayoung;Huh, Sunyoung;Kim, Myung sun
    • Journal of Engineering Education Research
    • /
    • v.27 no.4
    • /
    • pp.3-11
    • /
    • 2024
  • This study classified domestic and international systems by type, presenting their key features and examples, with the aim of outlining future directions for system development and research. AI-based learning assistance systems can be categorized into instructional-learning evaluation types and academic recommendation types, depending on their purpose. Instructional-learning evaluation types measure learners' levels through initial diagnostic assessments, provide customized learning, and offer adaptive feedback visualized based on learners' misconceptions identified through learning data. Academic recommendation types provide personalized academic pathways and a variety of information and functions to assist with overall school life, based on the big data held by schools. Based on these characteristics, future system development should clearly define the development purpose from the planning stage, considering data ethics and stability, and should not only approach from a technological perspective but also sufficiently reflect educational contexts.

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules

  • Yoon Kyoung Choi;Sung Kwon Kim
    • Journal of Internet Technology
    • /
    • v.19 no.6
    • /
    • pp.1691-1698
    • /
    • 2018
  • In this paper, we are to address the problem of item recommendations to users in shopping malls selling several different kinds of items, e.g., daily necessities such as cosmetics, detergent, and food ingredients. Most of current recommendation algorithms are developed for sites selling only one kind of items, e.g., music or movies. To devise efficient recommendation algorithms suitable for repetitively purchasing items, we give a method to implicitly assign ratings for these items by making use of repetitive purchase counts, and then use these ratings for the purpose of recommendation prediction with the help of user-based collaborative filtering and item-based collaborative filtering algorithms. We also propose associate item-based recommendation algorithm. Items are called associate items if they are frequently bought by users at the same time. If a user is to buy some item, it is reasonable to recommend some of its associate items. We implement user-based (item-based) collaborative filtering algorithm and associate item-based algorithm, and compare these three algorithms in view of the recommendation hit ratio, prediction performance, and recommendation coverage, along with computation time.

The Technique of Reference-based Journal Recommendation Using Information of Digital Journal Subscriptions and Usage Logs (전자 저널 구독 정보 및 웹 이용 로그를 활용한 참고문헌 기반 저널 추천 기법)

  • Lee, Hae-sung;Kim, Soon-young;Kim, Jay-hoon;Kim, Jeong-hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.75-87
    • /
    • 2016
  • With the exploration of digital academic information, it is certainly required to develop more effective academic contents recommender system in order to accommodate increasing needs for accessing more personalized academic contents. Considering historical usage data, the academic content recommender system recommends personalized academic contents which corresponds with each user's preference. So, the academic content recommender system effectively increases not only the accessibility but also usability of digital academic contents. In this paper, we propose the new journal recommendation technique based on information of journal subscription and web usage logs in order to properly recommend more personalized academic contents. Our proposed recommendation method predicts user's preference with the institution similarity, the journal similarity and journal importance based on citation relationship data of references and finally compose institute-oriented recommendations. Also, we develop a recommender system prototype. Our developed recommender system efficiently collects usage logs from distributed web sites and processes collected data which are proper to be used in proposed recommender technique. We conduct compare performance analysis between existing recommender techniques. Through the performance analysis, we know that our proposed technique is superior to existing recommender methods.

The Academic Information Analysis Service using OntoFrame - Recommendation of Reviewers and Analysis of Researchers' Accomplishments - (OntoFrame 기반 학술정보 분석 서비스 - 심사자 추천과 연구성과 분석 -)

  • Kim, Pyung;Lee, Seung-Woo;Kang, In-Su;Jung, Han-Min;Lee, Jung-Yeoun;Sung, Won-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.431-441
    • /
    • 2008
  • The academic information analysis service is including automatic recommendation of reviewers and analysis of researchers' accomplishments. The service of recommendation of reviewers should be processed in a transparent, fair and accountable way. When selecting reviewers, the following information must be considered: subject of project, reviewer's maj or, expertness of reviewer, relationship between applicant and reviewer. The analysis service of researchers' accomplishments is providing statistic information of researcher, institution and location based on accomplishments including book, article, patent, report and work of art. In order to support these services, we designed ontology for academic information, converted legacy data to RDF triples, expanded knowledge appropriate to services using OntoFrame. OntoFrame is service framework which includes ontology, reasoning engine, triple store. In our study, we propose the design methodology of ontology and service system for academic information based on OntoFrame. And then we explain the components of service system, processing steps of automatic recommendation of reviewers and analysis of researchers' accomplishments.

Music Recommendation System for Personalized Brain Music Training Research with Jade Solution Company

  • Kim, Byung Joo
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • According to a recent survey, most elementary and secondary school students nationwide are stressed out by their academic records. Furthermore most of high school students in Korea have to study under the great duress. Some of them who can't overcome the academic stress finalize their life by suiciding. A study has found that it is one of the leading causes of stimulating the thought of committing suicide in Korean high school students. So it is necessary to reduce the high school student's suicide rate. Main content of this research is to implement a personalized music recommendation system. Music therapy can help the student deal with the stress, anxiety and depression problems. Proposed system works as a therapist. The music choice and duration of the music is adjusted based on the student's current emotion recognized automatically from EEG. If the happy emotion is not induced by the current music, the system would automatically switch to another one until he or she feel happy. Proposed system is personalized brain music treatment that is making a brain training application running on smart phone or pad. That overcomes the critical problems of time and space constraints of existing brain training program. By using this brain training program, student can manage the stress easily without the help of expert.

Developing a Book Recommendation System Using Filtering Techniques (필터링 기법을 이용한 도서 추천 시스템 구축)

  • Chung, Young-Mee;Lee, Yong-Gu
    • Journal of Information Management
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • This study examined several recommendation techniques to construct an effective book recommender system in a library. Experiments revealed that a hybrid recommendation technique is more effective than either collaborative filtering or content-based filtering technique in recommending books to be borrowed in an academic library setting. The recommendation technique based on association rule turned out the lowest in performance.

Mobile App Recommendation with Sequential App Usage Behavior Tracking

  • Yongkeun Hwang;Donghyeon Lee;Kyomin Jung
    • Journal of Internet Technology
    • /
    • v.20 no.3
    • /
    • pp.827-838
    • /
    • 2019
  • The recent evolution of mobile devices and services have resulted in such plethora of mobile applications (apps) that users have difficulty finding the ones they wish to use in a given moment. We design an app recommendation system which predicts the app to be executed with high accuracy so that users are able to access their next app conveniently and quickly. We introduce the App-Usage Tracking Feature (ATF), a simple but powerful feature for predicting next app launches, which characterizes each app use from the sequence of previously used apps. In addition, our method can be implemented without compromising the user privacy since it is solely trained on the target user's mobile usage data and it can be conveniently implemented in the individual mobile device because of its less computation-intensive behavior. We provide a comprehensive empirical analysis of the performance and characteristics of our proposed method on real-world mobile usage data. We also demonstrate that our system can accurately predict the next app launches and outperforms the baseline methods such as the most frequently used apps (MFU) and the most recently used apps (MRU).

Recommendation System of University Major Subject based on Deep Reinforcement Learning (심층 강화학습 기반의 대학 전공과목 추천 시스템)

  • Ducsun Lim;Youn-A Min;Dongkyun Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Existing simple statistics-based recommendation systems rely solely on students' course enrollment history data, making it difficult to identify classes that match students' preferences. To address this issue, this study proposes a personalized major subject recommendation system based on deep reinforcement learning (DRL). This system gauges the similarity between students based on structured data, such as the student's department, grade level, and course history. Based on this information, it recommends the most suitable major subjects by comprehensively considering information about each available major subject and evaluations of the student's courses. We confirmed that this DRL-based recommendation system provides useful insights for university students while selecting their major subjects, and our simulation results indicate that it outperforms conventional statistics-based recommendation systems by approximately 20%. In light of these results, we propose a new system that offers personalized subject recommendations by incorporating students' course evaluations. This system is expected to assist students significantly in finding major subjects that align with their preferences and academic goals.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

An Improvement study in Keyword-centralized academic information service - Based on Recommendation and Classification in NDSL - (키워드 중심 학술정보서비스 개선 연구 - NDSL 추천 및 분류를 중심으로 -)

  • Kim, Sun-Kyum;Kim, Wan-Jong;Lee, Tae-Seok;Bae, Su-Yeong
    • Journal of Korean Library and Information Science Society
    • /
    • v.49 no.4
    • /
    • pp.265-294
    • /
    • 2018
  • Nowadays, due to an explosive increase in information, information filtering is very important to provide proper information for users. Users hardly obtain scholarly information from a huge amount of information in NDSL of KISTI, except for simple search. In this paper, we propose the service, PIN to solve this problem. Pin provides the word cloud including analyzed users' and others' interesting, co-occurence, and searched keywords, rather than the existing word cloud simply consisting of all keywords and so offers user-customized papers, reports, patents, and trends. In addition, PIN gives the paper classification in NDSL according to keyword matching based classification with the overlapping classification enabled-academic classification system for better search and access to solve this problem. In this paper, Keywords are extracted according to the classification from papers published in Korean journals in 2016 to design classification model and we verify this model.