• Title/Summary/Keyword: Academic information search

Search Result 261, Processing Time 0.029 seconds

A Study on Measures to Improve the Production and Service of Records of Presidential Overseas Trips: Focusing on "Records Collection" of the Presidential Archives Website (대통령 해외순방 기록의 생산과 서비스 개선방안 연구 대통령기록관 웹사이트 '기록컬렉션'을 중심으로)

  • Jeon, Na Hyeong
    • The Korean Journal of Archival Studies
    • /
    • no.78
    • /
    • pp.5-42
    • /
    • 2023
  • Since presidential overseas trips are carried out as the head of state representing the Republic of Korea, the resulting records of such trips have high academic and historical significance and value both in contemporary times and for future generations. This study analyzes the status of production and service of overseas trip records, focusing on whether the records of the president's overseas trips are being produced properly and provided sufficiently to the public, and examines development plans for improvement. Currently, as a result of examining a total of 282 overseas trips provided by the Presidential Archives website, it is difficult for users to understand which records are being produced for even the basic records regarding the trips are not posted. In addition, the website is provider-centered, making users feel alienated rather than being considered in terms of search and provided records. In this study, for the production of high-quality overseas travel records, the "Presidential Overseas Trip Records Production Guidelines" established during the 'Participatory Government' will be supplemented, improved and applied. This archive policy will not be subject to any external variables, including changes in the government, and is suggested that it be consistent and unaffected. In addition, in order to improve the service provided, the following is proposed: first, provision of 'comprehensive information' that allows users to understand the overall context of the trip; second, use of the "file-record" layer and hyperlink function; third, a system that allows the stages of production and service of overseas trip records to be interconnected. In order to carry out these tasks, it would be essential to establish and operate an organization dedicated to records, such as the Secretariat of Archives and Records Management during the 'Participatory Government' period.

Context Sharing Framework Based on Time Dependent Metadata for Social News Service (소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크)

  • Ga, Myung-Hyun;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.39-53
    • /
    • 2013
  • The emergence of the internet technology and SNS has increased the information flow and has changed the way people to communicate from one-way to two-way communication. Users not only consume and share the information, they also can create and share it among their friends across the social network service. It also changes the Social Media behavior to become one of the most important communication tools which also includes Social TV. Social TV is a form which people can watch a TV program and at the same share any information or its content with friends through Social media. Social News is getting popular and also known as a Participatory Social Media. It creates influences on user interest through Internet to represent society issues and creates news credibility based on user's reputation. However, the conventional platforms in news services only focus on the news recommendation domain. Recent development in SNS has changed this landscape to allow user to share and disseminate the news. Conventional platform does not provide any special way for news to be share. Currently, Social News Service only allows user to access the entire news. Nonetheless, they cannot access partial of the contents which related to users interest. For example user only have interested to a partial of the news and share the content, it is still hard for them to do so. In worst cases users might understand the news in different context. To solve this, Social News Service must provide a method to provide additional information. For example, Yovisto known as an academic video searching service provided time dependent metadata from the video. User can search and watch partial of video content according to time dependent metadata. They also can share content with a friend in social media. Yovisto applies a method to divide or synchronize a video based whenever the slides presentation is changed to another page. However, we are not able to employs this method on news video since the news video is not incorporating with any power point slides presentation. Segmentation method is required to separate the news video and to creating time dependent metadata. In this work, In this paper, a time dependent metadata-based framework is proposed to segment news contents and to provide time dependent metadata so that user can use context information to communicate with their friends. The transcript of the news is divided by using the proposed story segmentation method. We provide a tag to represent the entire content of the news. And provide the sub tag to indicate the segmented news which includes the starting time of the news. The time dependent metadata helps user to track the news information. It also allows them to leave a comment on each segment of the news. User also may share the news based on time metadata as segmented news or as a whole. Therefore, it helps the user to understand the shared news. To demonstrate the performance, we evaluate the story segmentation accuracy and also the tag generation. For this purpose, we measured accuracy of the story segmentation through semantic similarity and compared to the benchmark algorithm. Experimental results show that the proposed method outperforms benchmark algorithms in terms of the accuracy of story segmentation. It is important to note that sub tag accuracy is the most important as a part of the proposed framework to share the specific news context with others. To extract a more accurate sub tags, we have created stop word list that is not related to the content of the news such as name of the anchor or reporter. And we applied to framework. We have analyzed the accuracy of tags and sub tags which represent the context of news. From the analysis, it seems that proposed framework is helpful to users for sharing their opinions with context information in Social media and Social news.

How Enduring Product Involvement and Perceived Risk Affect Consumers' Online Merchant Selection Process: The 'Required Trust Level' Perspective (지속적 관여도 및 인지된 위험이 소비자의 온라인 상인선택 프로세스에 미치는 영향에 관한 연구: 요구신뢰 수준 개념을 중심으로)

  • Hong, Il-Yoo B.;Lee, Jung-Min;Cho, Hwi-Hyung
    • Asia pacific journal of information systems
    • /
    • v.22 no.1
    • /
    • pp.29-52
    • /
    • 2012
  • Consumers differ in the way they make a purchase. An audio mania would willingly make a bold, yet serious, decision to buy a top-of-the-line home theater system, while he is not interested in replacing his two-decade-old shabby car. On the contrary, an automobile enthusiast wouldn't mind spending forty thousand dollars to buy a new Jaguar convertible, yet cares little about his junky component system. It is product involvement that helps us explain such differences among individuals in the purchase style. Product involvement refers to the extent to which a product is perceived to be important to a consumer (Zaichkowsky, 2001). Product involvement is an important factor that strongly influences consumer's purchase decision-making process, and thus has been of prime interest to consumer behavior researchers. Furthermore, researchers found that involvement is closely related to perceived risk (Dholakia, 2001). While abundant research exists addressing how product involvement relates to overall perceived risk, little attention has been paid to the relationship between involvement and different types of perceived risk in an electronic commerce setting. Given that perceived risk can be a substantial barrier to the online purchase (Jarvenpaa, 2000), research addressing such an issue will offer useful implications on what specific types of perceived risk an online firm should focus on mitigating if it is to increase sales to a fullest potential. Meanwhile, past research has focused on such consumer responses as information search and dissemination as a consequence of involvement, neglecting other behavioral responses like online merchant selection. For one example, will a consumer seriously considering the purchase of a pricey Guzzi bag perceive a great degree of risk associated with online buying and therefore choose to buy it from a digital storefront rather than from an online marketplace to mitigate risk? Will a consumer require greater trust on the part of the online merchant when the perceived risk of online buying is rather high? We intend to find answers to these research questions through an empirical study. This paper explores the impact of enduring product involvement and perceived risks on required trust level, and further on online merchant choice. For the purpose of the research, five types or components of perceived risk are taken into consideration, including financial, performance, delivery, psychological, and social risks. A research model has been built around the constructs under consideration, and 12 hypotheses have been developed based on the research model to examine the relationships between enduring involvement and five components of perceived risk, between five components of perceived risk and required trust level, between enduring involvement and required trust level, and finally between required trust level and preference toward an e-tailer. To attain our research objectives, we conducted an empirical analysis consisting of two phases of data collection: a pilot test and main survey. The pilot test was conducted using 25 college students to ensure that the questionnaire items are clear and straightforward. Then the main survey was conducted using 295 college students at a major university for nine days between December 13, 2010 and December 21, 2010. The measures employed to test the model included eight constructs: (1) enduring involvement, (2) financial risk, (3) performance risk, (4) delivery risk, (5) psychological risk, (6) social risk, (7) required trust level, (8) preference toward an e-tailer. The statistical package, SPSS 17.0, was used to test the internal consistency among the items within the individual measures. Based on the Cronbach's ${\alpha}$ coefficients of the individual measure, the reliability of all the variables is supported. Meanwhile, the Amos 18.0 package was employed to perform a confirmatory factor analysis designed to assess the unidimensionality of the measures. The goodness of fit for the measurement model was satisfied. Unidimensionality was tested using convergent, discriminant, and nomological validity. The statistical evidences proved that the three types of validity were all satisfied. Now the structured equation modeling technique was used to analyze the individual paths along the relationships among the research constructs. The results indicated that enduring involvement has significant positive relationships with all the five components of perceived risk, while only performance risk is significantly related to trust level required by consumers for purchase. It can be inferred from the findings that product performance problems are mostly likely to occur when a merchant behaves in an opportunistic manner. Positive relationships were also found between involvement and required trust level and between required trust level and online merchant choice. Enduring involvement is concerned with the pleasure a consumer derives from a product class and/or with the desire for knowledge for the product class, and thus is likely to motivate the consumer to look for ways of mitigating perceived risk by requiring a higher level of trust on the part of the online merchant. Likewise, a consumer requiring a high level of trust on the merchant will choose a digital storefront rather than an e-marketplace, since a digital storefront is believed to be trustworthier than an e-marketplace, as it fulfills orders by itself rather than acting as an intermediary. The findings of the present research provide both academic and practical implications. The first academic implication is that enduring product involvement is a strong motivator of consumer responses, especially the selection of a merchant, in the context of electronic shopping. Secondly, academicians are advised to pay attention to the finding that an individual component or type of perceived risk can be used as an important research construct, since it would allow one to pinpoint the specific types of risk that are influenced by antecedents or that influence consequents. Meanwhile, our research provides implications useful for online merchants (both online storefronts and e-marketplaces). Merchants may develop strategies to attract consumers by managing perceived performance risk involved in purchase decisions, since it was found to have significant positive relationship with the level of trust required by a consumer on the part of the merchant. One way to manage performance risk would be to thoroughly examine the product before shipping to ensure that it has no deficiencies or flaws. Secondly, digital storefronts are advised to focus on symbolic goods (e.g., cars, cell phones, fashion outfits, and handbags) in which consumers are relatively more involved than others, whereas e- marketplaces should put their emphasis on non-symbolic goods (e.g., drinks, books, MP3 players, and bike accessories).

  • PDF

A study on the improving and constructing the content for the Sijo database in the Period of Modern Enlightenment (계몽기·근대시조 DB의 개선 및 콘텐츠화 방안 연구)

  • Chang, Chung-Soo
    • Sijohaknonchong
    • /
    • v.44
    • /
    • pp.105-138
    • /
    • 2016
  • Recently with the research function, "XML Digital collection of Sijo Texts in the Period of Modern Enlightenment" DB data is being provided through the Korean Research Memory (http://www.krm.or.kr) and the foundation for the constructing the contents of Sijo Texts in the Period of Modern Enlightenment has been laid. In this paper, by reviewing the characteristics and problems of Digital collection of Sijo Texts in the Period of Modern Enlightenment and searching for the improvement, I tried to find a way to make it into the content. This database has the primary meaning in the integrating and glancing at the vast amounts of Sijo in the Period of Modern Enlightenment to reaching 12,500 pieces. In addition, it is the first Sijo data base which is provide the variety of search features according to literature, name of poet, title of work, original text, per period, and etc. However, this database has the limits to verifying the overall aspects of the Sijo in the Period of Modern Enlightenment. The title and original text, which is written in the archaic word or Chinese character, could not be searched, because the standard type text of modern language is not formatted. And also the works and the individual Sijo works released after 1945 were missing in the database. It is inconvenient to extract the datum according to the poet, because poets are marked in the various ways such as one's real name, nom de plume and etc. To solve this kind of problems and improve the utilization of the database, I proposed the providing the standard type text of modern language, giving the index terms about content, providing the information on the work format and etc. Furthermore, if the Sijo database in the Period of Modern Enlightenment which is prepared the character of the Sijo Culture Information System could be built, it could be connected with the academic, educational contents. For the specific plan, I suggested as follow, - learning support materials for the Modern history and the national territory recognition on the Modern Age - source materials for studying indigenous animals and plants characters creating the commercial characters - applicability as the Sijo learning tool such as Sijo Game.

  • PDF

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

A Study on Prevention of Accident in Korean Security Industry (경호산업의 재해예방에 관한 연구)

  • Cho, Han-Bong
    • Korean Security Journal
    • /
    • no.2
    • /
    • pp.259-289
    • /
    • 1999
  • The Security Industry has dynamic working conditions. So this study intends to find the advisable direction for the reduction of accidents. To achieve the aim, the investigation of documents and the examinations of actual proofs have been done to figure the theoretical background and to see the basic knowledge of security industry. The questionnaire was composed of two question sheets to search real data and actual proofs, with making targets of pure security organization and personnel. The one consists of 9 questions to find the scale and extent of security organizations and the population and character of security personnel, and the other 25 questions in 3 major areas to analyze the causes, the frequency rates, the factors, and the condition of accidents. The period of survey was July 15th to October 15th in 1997 by mail/telephone/interview. The questionnaires were efficiently returned from 102 different organizations including the public security groups of Seoul Metropolitan Police Bureau and so on, with the information of 8,222 persons having worked for Korean Security Industry in 1996. So being based on the reality, some meaningful facts were found, and were compared with the national statistics of the Government. This study is made up of 5 chapters : in the 1st chapter the motivation, the object, the method, the direction and the limitation of the approach were presented ,in the 2nd chapter the theoretical background were inferred ; in the 3rd chapter the collected data of accidents in Korean Security Industry were analyzed and explained on the base of the questionnaires , in the 4th chapter the advisable facts connected with preventing accidents were mentioned ; in the last the conclusion were stated. With the replies of 102 different organizations including the information of 8,222 persons in 1996, the main facts found or analyzed through this study are as follows. Firstly, accident is an unpredictable and occasional event. It occurs to man and/or thing, but the frequency rate of accidents in Korean Government and other Institutes has been calculated and evaluated only in the point of the accident related with man. Secondly, the factors of accidents are firstly relevant to the way preventing accidents in Security Industry in Korea. However the frequency rate is academically calculated and evaluated by at once man(population) and hour(time). But the Government has done the rate only by man(population). This can be improper and inaccurate rates. Thirdly, the confused concept of security is used in Korean Government, academic society, corporation and so on. Therefore the detailed formation of the concept is needed for the development of Security Industry in Korea. Fourthly, security organizations can be classified into 'public security(public law enforcement)' and 'private security' according to its identification, and furthermore 'private security' can be divided into 'facilities-guard service', 'body-guard service', and 'patrol service' according to its major role. Fifthly, in the viewpoint of the number of both organization and population,'facilities-guard service' is centered in Korean 'private security'. According to the analyzed results of the questionnaires in this study, the frequency rate of accidents of Korean Security Industry is 0.43(%) totally in 1996 : 'facilities-guard service' 0.54(%), 'body-guard service' 0.12(%), and 'patrol service' 0.21(%) in 'private security', and 'public security' 0.20(%). With regard to the accident frequency rate of organization and population, 'facilities-guard service' is the highest. The accident frequency rate of population in 'facilities-guard service' organization ranges dispersively from 0.20(%) to 11.11(%). Sixthly, the accidented rate of workers having serviced for under one year is 57.6(%). This can mean that the main factor of accidents in Korean Security Industry is the lack of role-understanding and training/education. And another factor can be found on the time of accident occurrence. Many accidents have been occurred on the relaxed points like as just after lunch and morning rush-hour. Lastly, the major advisable facts related to preventing accidents are as follows : The workers who are over fifty years old in 'facilities-guard service' organization need to be educated for preventing accidents ; It is desirable that the training and education to prevent accidents should be practiced in the time of pre-service ; As the style of accidents and the age of the accidented are not same according to major service area('public security' and 'private security' : 'facilities-guard service', 'body-guard service', and 'patrol service'), the plans to prevent accidents must be different and various. However fracture and bruise are general accidents in Korean Security Industry ; Workers must care about traffic accident and violent fall ; It seems that the grouped working with other two persons will reduce accident occurrence possibility rather than individually single working.

  • PDF

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Comparison of food involvement scale (FIS) and use intention for block type sauce between US and Japanese consumers (미국과 일본 소비자의 음식관여도와 블록형 소스에 대한 이용의도 비교 분석)

  • Lee, Hojin;Kim, Su Jin;Lee, Min A
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.590-598
    • /
    • 2018
  • Purpose: This study was conducted to compare the food involvement scale (FIS) of American and Japanese consumers. In addition, the effects of familiarity, likability, and expectations on willingness to use intentions for block type sauce by nationality were evaluated. Methods: A total of 149 and 112 American and Japanese consumers, respectively, completed the survey. Consumers were asked about familiarity, likability, expectation, willing to use intention, and usage frequency of block type sauce, food involvement scale (FIS), and demographic information. Results: There were differences in the using frequency of block type sauce according to nationality, with consumers in Japan showing significantly higher frequency of using block type sauce than those in the United States (US) (p < 0.001). According to the FIS, US consumers were more focused on how to provide food than food, such as cooking process, table setting, and food shopping, compared to Japanese consumers. In addition, 'expectation' and 'likability' among US consumers and 'expectation' and 'familiarity' among Japanese consumers were positive attributes for willing to use intention (p < 0.01). Conclusion: In the case of the US consumers, 'familiarity' was not significant because the using frequency of the block type sauce was lower than that of Japanese consumers. In the case of the Japanese consumers, 'likability' was not significant because they enjoy cooking itself according to the FIS. Therefore, it is necessary to recognize positive attributes as a key factor for block type sauce, as well as to search for ways to apply marketing strategies based on attributes by nationality.