• Title/Summary/Keyword: Abutments

Search Result 423, Processing Time 0.025 seconds

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

IMPACT OF IMMEDIATE AND NON-IMMEDIATE PROVISIONALIZATION ON THE SOFT TISSUE ESTHETICS OF FINAL RESTORATIONS ON IMMEDIATELY PLACED IMPLANTS

  • Han, Chong-Hyun;Paik, Jeong-Won;Lee, Keun-Woo;Han, Dong-Hoo;Chung, Moon-Kyu;Kim, Sun-Jai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.238-245
    • /
    • 2008
  • STATEMENT OF PROBLEM: Interpoximal papilla could be re-established without immeidate support with a provisional resotration following an immdiate implant placement. PURPOSE: Successful esthetic outcomes were reported utilizing immediate provisionalization following immediate implant placements. The aim of this study was to evaluate the soft tissue esthetics around immediately placed single tooth implant restorations with or without immediate provisional restorations. METHODS: A total of ten patients, who had a hopeless maxillary anterior tooth, were enrolled in this study. Screw retained provisional restorations were delivered to the randomly chosen 5 patients (immediate provisionalization group) on the day of immediate implant placement and maintained for about 5 months. For the remaining five patients (non-immediate provisionalization group), healing abutments were delivered on the day of surgery, replaced with screw retained provisional restorations approximately 3 months afterwards, and the provisional restorations were maintained for about 3 months. Digital photographs were taken at the delivery of final restorations in order to assess following variables; mesial papilla, distal papilla, soft tissue level, soft tissue contour and facial soft tissue prominence. The variables were compared to those of the contralateral natural tooth and scored by prosthodontists, periodontists, orthodontists and dental students. RESULTS: The immediate provisionalization group marked significantly higher scores on the following variables; soft tissue level and facial soft tissue prominence. In evaluating each variable, there were no notable differences in opinion between four dentist groups. CONCLUSION: Immediate provisionalization can be a treatment option to achieve superior soft tissue esthetics around immediately placed single implant restorations rather than non-immediate provisionalization approaches.

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

A Study on the heat generation during implant abutment preparation (임플란트 지대주 삭제시의 발생열에 관한 연구)

  • Lee, Ho-Jin;Song, Kwang-Yeob;Jang, Tae-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Excessive heat generation at the implant-bone interface may cause irreversible bone damage and loss of osseointegration. The effect of heat generation in vitro at the implant surface caused by abutment reduction with high-speed dental turbine was examined. Titanium-alloy abutments connected to a titanium alloy screw-implant embedded in an acrylic-resin block in a $37^{\circ}C$ water bath were prepared. Temperature changes were recorded via embedded thermocouples at the cervix and apex of the implant surface. Analysis of variance for repeated measures was used to compare seven treatment groups. Fifty seconds of continuous cutting with air and water coolant caused a mean temperature increase of $1.24^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $2.50^{\circ}C$ at apex and $1.64^{\circ}C$ at cervix. But, continuous cutting with air coolant caused a mean temperature increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Preparation of implant abutment does not lead to detrimental effect on peri-implant tissues provided that adequate cooling. However, without water cooling, extreme overheating could be provoked, reaching the critical temperature that would lead to irreversible bone damage within only a few seconds.

MAXILLARY SINUS AUGMENTATION WITH BOVINE BONE MINERAL(Bio-$Oss^{(R)}$) AND THE MAXILLARY TUBEROSITY (상악결절과 다공성 골 미네랄의 복합이식을 통한 상악동 골이식술)

  • Han, Ki-Deok;Chung, Il-Hyuk;Lee, Eun-Kyung;Suh, Je-Duck;Song, Seung-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.391-396
    • /
    • 2007
  • The aim of this study was to evaluate implant stability placed in the maxillary sinus which was augmented with bovine bone mineral(Bio-$Oss^{(R)}$) mixed with autogenous bone from the maxillary tuberosity. Maxillary sinus floor augmentation with the mixture of bovine bone mineral and autogenous maxillary tuberosity bone was performed in 30 maxillary sinuses, and 68 implants were placed at the time of sinus graft. After 6 months of implant placement abutments were connected and implant stability quotient(ISQ) was measured by radio frequency analysis(RFA). In addition, bone level changes was evaluated by taking periapical radiograph. During surgical procedures, no complication was observed, and all patients healed uneventfully. At 6 months the implant showed stable ISQ values. The marginal bone level changes around the fixtures was stably maintained through out the follow up period. This study confirmed that maxillary sinus floor augmentation with mixture of bovine bone mineral and maxillary tuberosity bone could be reliable for bone regeneration in subantral space.

A PHOTOELASTIC STRESS ANALYSIS OF FIXED PARTIAL DENTURES WITH BICON IMPLANTS ON MANDIBULAR POSTERIOR AREA (하악구치부에서 Bicon 임플란트에 의해 지지되는 고정성 국소의치의 광탄성 응력분석)

  • Kang, Jong-Un;Kim, Nan-Young;Kim, Yu-Lee;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.412-424
    • /
    • 2004
  • Statement of problem: Several prosthetic options are available for the restoration of multiple adjacent implants. A passively fitting prosthesis has been considered a prerequisite for the success and maintenance of osseointegration. Passivity is a particular concern with multiple implants because of documented inaccuracies in the casting and soldering process. One way to avoid this problem is to restore the implants individually, however, the restorations of individual adjacent impants requires careful adjustment of interproximal contacts. Purpose: The purpose of this study was to compare the stress distribution pattern and amount surrounding Bicon implants with individual crowns and splinted restorations. Material and method: A photoelastic model of a human partially edentulous left mandible with 3 Bicon implants($4{\times}11mm$) was fabricated. For non-splinted restorations, individual crowns were fabricated on 3 abutments ($4{\times}0.65mm,\;0^{\circ}$, 2.0 mm post, Bicon Inc., Boston, USA) After the units were cemented, 4 levels of interproximal contact tightness were evaluated: open, ideal ($8{\mu}m$ shim stock drags without tearing), medium($40{\mu}m)$), and heavy($80{\mu}m$). Splinted 3-unit fixed partial dentures were fabricated and cemented to the model. Changes in stress distribution under simulated non-loaded and loaded conditions(7.5, 15, 30 lb) were analyzed with a circular polaricope. Results: 1. Stresses were distributed around the entire body of fin in Bicon implants. 2. Splinted restorations were useful for distribution of stress around implants especially with higher loads. 3. By increasing the contact tightness between the individually restored three implants, the stress increased in the coronal portion of implants. Conclusions: Ideal adjustment of the contact tightness was important to reduce the stresses around individually restored Bicon implants.

The stress analysis of supporting tissues according to crown restorative materials in Brånemark osseointegrated implant (Brånemark 골유착성 매식체의 금관 수복재료에 따른 지지조직의 응력분석)

  • Jeong, Gwan-Ho;Bae, Tae Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.199-215
    • /
    • 1990
  • This study was to analyze the stress distribution of implant and supporting tissue in $Br{\aa}nemark$ osseointegration implant. The analysis has been conducted by using the axisymmetric finite element method and type of model according to crown material. Tests have been performed at 1 kg load on central fossa of crown portion. Each type of model was designed differently according to crown material. 1) Porcelain fused to metal crown(Model A) 2) Composite resin veneered crown(Model B) 3) Acrylic resin veneered crown(Model C) 4) Type III gold crown(Model D) The displacements and stresses of implant and supporting structures were analyzed to investigate the influence of the type of crown material. The results were obtained as follows : 1. Displacement of implant was shown uniformly downward displacement in all models and abutments were observed distally downward displacement. 2. In supporting tissues, stress was concentrated on the crest of compact bone and the spongy bone below implant. 3. The PFM and the type III gold crown showed the largest concentration of stress at the crest of compact bone and the spongy bone below implant, respectively. Acrylic resin artificial teeth and composite resin veneered crown indicated almost the same distribution of stress. 4. The gold screw, the abutment screw and the top of abutment showed the concentration of stress in implants of every model.

  • PDF

THE PRINCIPLE OF THE TOOTH-BORNE AND FREE-END REMOVABLE PARTIAL DENTURE DESIGN (치아지지및 유리단 국소의치의 설계원칙)

  • Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.217-229
    • /
    • 1990
  • The Applegate-Kennedy classification, the drawing of removable partial denture design using color coding, the selective tissue placement impression method in case of Class I and Class II removable partial dentures, the design of the swing lock attachment of an alternative approach to conventional removable partial denture, the design of the intracoronal or extracoronal attachment, and the removable partial denture design using a rotational path were presented. The following conclusions from the above things were presented : 1. The swing lock attachment removable partial denture can be effective to an alternative approach when the design of conventional removable partial denture is improper with markedly mobile remaining teeth or missing key abutments. 2. Intracoronal or extracoronal attachments must be selected care-fully considering the conditions of the abutment teeth and alveolar ridge whether more occlusal loads to the abutment teeth or to the alveolar ridge are distributed. 3. It must be almost prerequisite that a functional impression is taken in case of Class I and class II removable partial dentures and in case of tooth-borne removable partial dentures, a removable partial denture using rotational path is strong, hygienic, esthetic, and can be accomplished successfully in the clinical aspect when it is properly designed and fabricated through the complete understanding of an indication and a principle. 4. All necessary informations must be achieved with carefully investigated surveying procedure according to each clinical case by Applegate-Kennedy classification which can be helpful and useful in the clinical application and it is important that dentists themselves must be in the habit of drawing a reasonable partial denture design using a color coding in the paper sheet.

  • PDF

Immediate restorations in a fully edentulous patient utilizing digital system: A case report (완전 무치악 환자에서 디지털 시스템을 이용한 임플란트 즉시 보철수복 증례)

  • Fang, Jeong-Whan;Jeong, Seung-Mi;Kang, Se-Ha;Hwang, Chan-Hyeon;Kim, Dae-Hwan;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • This article describes how to use CBCT and an intraoral scanner in a fully edentulous case that enables the clinician to place implants with flapless guided surgery and to engage prefabricated, customized implant abutments at the time of implant surgery, with only 1 clinical consultation before implant surgery. The patient's existing denture is used to simulate the teeth, the soft tissue and the vertical dimension of occlusion, and jaw relationship in the fully edentulous jaw. It provides clinicians with a fast workflow and improves clinical efficiency.

Three-dimensional finite element analysis of platform switched implant

  • Moon, Se-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • PURPOSE. The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS. In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION. Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used.