• Title/Summary/Keyword: Abutment surface

Search Result 182, Processing Time 0.026 seconds

A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw (치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

Optimization of the Groove Depth of a Sealing-type Abutment for Implant Using a Genetic Algorithm (유전자알고리즘을 이용한 임플란트용 실링어버트먼트의 홈 깊이 최적화에 관한 연구)

  • Lee, Hyeon-Yeol;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.24-30
    • /
    • 2018
  • Dental implants are currently widely used as artificial teeth due to their good chewing performance and long life cycle. A dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, gap at the interface surface between the abutment and the fixture is often occurred, and results in some deteriorations such as loosening of fastening screw, dental retraction and fixture fracture. To cope with such problems, a sealing-type abutment having a number of grooves along the conical-surface circumference was previously developed, and shows better sealing performance than the conventional one. This study carries out optimization of the groove shape by genetic algorithm(GA) as well as structural analysis in consideration of external chewing force and pretension between the abutment and the fixture. The overall optimization system consists of two subsystems; the one is the genetic algorithm with MATLAB, and the other is the structural analysis with ANSYS. Two subsystems transmit and receive the relevant data with each other throughout the optimization processes. The optimization result is then compared with that of the conventional one with respect to the contact pressure and the maximum stress. The result shows that the optimized model gives better sealing performance than the conventional sealing abutment.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT (임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석)

  • Hur Jin-Kyung;Kay Kee-Sung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

Posterior single implant prosthesis using scannable healing abutment (스캔이 가능한 치유지대주를 이용한 구치부 단일 임플란트 수복 증례)

  • Kim, Seong-Min;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.432-438
    • /
    • 2019
  • Accurate impression taking for the success of implant prosthesis is a very important process. Methods of taking implant impression include the conventional method using impression coping and impression material, and the digital method using an intraoral scanner and scanbody. However, the impression coping or the scanbody must install after remove healing abutment. Because of this, the dentist must repeat the process of removing and installing the healing abutment, the impression coping or the scanbody several times. In addition, the impression coping or the scanbody rises higher than the occlusal surface, so the patient has the inconvenience of constantly maintaining the open state. Recently, a scannable healing abutment, which can be scanned by a intraoral scanner directly, without the need to remove the healing abutment by applying a scannable part of the scanbody to the healing abutment, was introduced. We present a case of single posterior implant prosthesis using a scannable healing abutment.

CHANGES OF ABUTMENT SCREW AFTER REPEATED CLOSING AND OPENING

  • Kim Hee-Jung;Chung Chae-Heon;Oh Sang-Ho;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.628-640
    • /
    • 2004
  • Statement of problem. Wear as a result of repeated closing/opening cycles may decrease the friction coefficient of screw head, threads, and other mating components and, consequently, resistance to opening gradually decreases. It may cause screw loosening, which is one of the most common failures in implant prosthesis. Purpose. The purpose of this study is to evaluate the changes on the head and thread surface of the abutment screws after repeated closing and opening through the examination of tested screws in SEM(scanning electron microscope). Materials and methods. Five species of abutments were selected (3i-three, Avana-two) respectively by two pieces. The implant fixtures were perpendicularly mounted in liquid unsaturated polyesther(Epovia, Cray Valley Inc.) with dental surveyor. Each abutment was secured to the implant fixture by each abutment screw with recommended torque value using a digital torque controller. The abutment screws were repeatedly tightened and removed 20 times with a digital controller. FESEM (field emission scanning electron microscope, Netherland, Phillips co., model:XL 30 SFEG) was used to observe changes of each part caused by repeatedly closing/opening expeiment. First, the Photomicrographs of pre-test screws provided by each manufacturer were taken. The changes of each screw were investigated after every fifth closing and opening experiment with FESEM. Scaning electron microscope photomicrographs of each screw were taken four times. Results. As the number of closing and opening was increased, the wear or distortion of hexed or squared slot that contacted with the driver tip was more severely progressed. Wear or distortion of hexed slot was more severe than that of squared slot and it was more remarkable in the titanium screw than in the gold screw. All the tested screws showed that the width in the crest of their screw thread decreased gradually as the test was proceeded. Conclusions. Conclusively, we recommend the clinical use of gold screw, a periodic exchanges of abutment screws and avoiding repeated closing/opening unnecessarily. We also suggest a more careful manipulation of the abutment screw and screw-driver and using of abutment screw with an acute-angled slot design rather than an obtuse-angled one. Finally, it is suggested that the new slot design and the surface treatment for enduring wear or distortion should be devised.

Comparison of Stress of the Abutment Teeth and Denture Base in Distal Extension Removable Partial Dentures Retained Konus Crown, Precision Attachment and RPI Clasp with the Occlusal Load Application (유리단 국소의치의 교합하중 적용시 이중금관, 어태치먼트 및 RPI clasp 유지장치에 따라 지대치와 의치상에 미치는 응력 비교)

  • Jun, In-Sik;Kim, Bu-Sub;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.331-346
    • /
    • 2006
  • Free-end partial dentures, which are supported by teeth surrounded by dental root membranes and elastic mucous membrane tissues, may cause stress to the abutment teeth due to external force imposed on the denture base, increase the mobility of the abutment teeth, and bring about a change in the periodontal tissue. General retainers used in partial dentures are categorized into clasp, attachment, and Konus crown. Stress imposed on the abutment teeth and mobility of the denture base have relations with the lifetime of a crown and abutment teeth, and have direct relations with the chewing ability. Thus, a need arises to make a comparative analysis of stress of the three direct retainers on the abutment teeth and interpret the mobility of the denture base. This study designed three kinds of removable partial dentures (one kind of attachment partial denture, one kind of Konus crown partial denture, and one kind of clasp partial denture), and fabricated Dentiforms of bilateral partial dentures (Kennedy Class I) with lower left 1st premolar and lower right 1st and 2nd premolars being as the abutment teeth. A strain gauge was installed in the mesial and distal surface of the lowerr left 1st premolar (No. 34) of the fabricated dentiform and in the lower part of the denture base, and installed were a clasp partial denture, an attachment partial denture, and a Konus crown partial denture. Then, the vertical static load of 5kgf and 7.5kgf at the occlusion surface of the lower left No. 6 molar was generated for a total of 20 frequencies of load each using a push-full gauge, and thus a change in the output of the strain gauge was measured. With the respective application of Konus crown, attachment and RPI clasp in the free-end partial denture, surveyed was the distribution of stress imposed on the abutment teeth and the denture base according to the location of occlusion force load so as to come up with the following results. 1. Konus crown and attachment partial dentures generated much stress, and more stress on the abutment teeth than RPI clasp dentures did. Attachment dentures tended to further intensify stress on the abutment teeth than Konus crown dentures did. 2. Attachment dentures and Konus dentures imposed less stress on the denture base than RPI clasp dentures did. There was no stress difference between Attachment and Konus crown dentures. 3. Dentures that were designed with the application of retainers using sturdy linkage methods tended to be less mobile.

  • PDF

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.

THE EFFECT OF ABUTMENT MATERIALS AND SURFACE TREATMENT ON RUBBER BASE IMPRESSION (고무 인상채득시 지대치재료와 표면처리법의 영향)

  • Jeong Do-Jin;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.146-156
    • /
    • 2001
  • The purpose of this study was twofold. One was to evaluate the wettability of 4 elastomeric impression materials on tooth and different kinds of filling materials. The other was to identify the effect of topical surfactants sprayed on the surface of each impression. The elastomeric impression mate rials used in this experimental study were one polyether(Impregum F) and three polyvinyl siloxanes(Provil novo, Zerosil, Imprint). The abutments were prepared for 3/4 crown or onlay on the extracted human first molar. The filling materials used in this study for the duplication of prepared abutment were composite resin, amalgam, and casting metal. Impression was taken by manufacturer's recommendations and the number of voids on the impression surface was counted. The topical surfactants were Spannex $II^{(R)}$ and $Cohere^{(R)}$. The wettability was evaluated by comparing the number of voids between non-treated group and treated groups. The results were as follows : 1. $Zerosil^{(R)}$ showed the least number of voids on the impression surface. The number of voids increased in order of Provil $novo^{(R)}$, Impregum $F^{(R)}$, and $Imprint^{(R)}$. 2. Impregum $F^{(R)}$ and $Zerosil^{(R)}$ showed the least number of voids on the surface of dental stone master cast. The number is inclosed in order of Provil $novo^{(R)}$ and Imprint 3. When abutment material is tooth, the number of voids on the surface of master cast was smallest compared with that of other abutment materials. The number of voids increased in order of casting metal, amalgam and composite resin 4. The number of voids on the surface of the dental stone master cast was smallest when Spannex $II^{(R)}$ was used, followed by $Cohere^{(R)}$ treated group and non-treated group. These results suggest that the difference in wettability caused by the types of rubber base impression materials as well as abutment materials can affect the number of voids. And the use of topical surfactant for rubber base impression materials can improve the wettability of the materials and enhance the accurate master cast which has fewer surface voids.

  • PDF

SINGLE TOOTH IMPLANT RESTORATION USING COMBINATION IMPLANT CROWN : A CASE REPORT (콤비네이션 임프란트 크라운(Combination Implant Crown)을 이용한 단일치아의 임프란트 보철수복증례)

  • Kim, Rae-Gyoung;Song, Eon-Hee;Choi, Byeong-Gap;Kim, Hyoun-Chull;Ahn, Hyun-Jeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.375-382
    • /
    • 1999
  • The purpose of this article is to present the clinical and laboratory procedures for single tooth restoration using 'Combination Implant Crown'. It is cemented on implant abutment and that abutment is screw-retained over implant body. This type of implant restorations has the advantages of cement-retained restoration while being antirotational and retrievable. And, more esthetic and functional result can be achieved by minimizing the size of access hole. The results were as follows : 1. Preparation of abutment below the cuff line should be avoided 2. Axial reduction of implant abutment should not be excessive because it may weaken the abutment 3. More esthetical and functional occlusal surface was achieved with a minimal access hole which is slightly larger than the diameter of hex driver to enable future total retrievability. 4. Combination Implant Crown has the advantages of both the cement-retained and screw-retained type implant restoration. 5. Cementation between implant crown and abutment reduces screw loosening through even force distribution

  • PDF

Finite Element Analysis of Supporting Bone according to Custom Abutment Angles (맞춤형 지대주 각도에 따른 지지골의 유한요소 분석)

  • Nam, Min-Gyeong;Kim, Nam-Sic
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • Purpose: The purpose of this study is a finite element analysis of supporting bone according to custom abutment angle. Methods: Implant fixture was selected with a diameter of 4 mm and the length of 13 mm. The fixture and abutment was designed by a combination of the abutment screw clamping force to produce a custom abutment model of $0^{\circ}$, $15^{\circ}$, $25^{\circ}$ and $35^{\circ}$. The loading condition of 176 N was applied to the lingual surface of the crown, near to the incisor edge, and horizontal load. An oblique load of $90^{\circ}$ was applied long axis of the implant fixture analyze the stress of supporting bone. Results: The result of mechanical analysis was observed that the supporting bone stress analysis of the horizontal load, the von Mises stress values (MPa) are given in the order of TH00 (432.6) > TH25 (418.0) > TH15 (417.4) > TH35 (415.8), the oblique load, the von Mises stress values are given in the order of TO00 (459.3) > TO15 (399.6) > TO25 (374.8) > TO35 (343.4) Conclusion: The $35^{\circ}$ abutment over the current clinical tolerance limits will be available for clinical application.