• Title/Summary/Keyword: Absorption refrigerator

Search Result 31, Processing Time 0.034 seconds

Evaluation of indoor refrigerator noise in steady-state condition (주거 공간내 냉장고 소음의 정상상태 평가)

  • Lee, Chung-Hwa;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.790-795
    • /
    • 2004
  • The characteristics of refrigerator noise recorded in anechoic chamber was investigated in condition of a the real living room and a kitchen. To predict the noise propagation in an apartment unit, room acoustic simulation software was used. It was found that the noise level in the real living room was $4\sim8dB$ higher than in the anechoic chamber. When a noise barrier and absorption materials were used on the rear wall and floor, the noise level reduced up to $3\sim4dB$. In addition, when the subjective evaluation of auralized refrigerator noise was undertaken using headphone, it was revealed that 21dB (A) is the allowable sound pressure level of 95% satisfaction.

  • PDF

Removal of Cu impurities in LiBr solution using cyclone electrowinning method (싸이클론 전해환원방법을 이용한 LiBr 용액내의 Cu 불순물 제거에 관한 연구)

  • Da Jung Park;Kyu Hwan Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • The LiBr aqueous solution, which is the absorption liquid of absorption refrigerator, must be replaced periodically because the concentration of impurities such as Cu2+, Fe2+, Ca2+, etc., increases due to corrosion of the tubes as the period of use increases, and the refrigeration efficiency decreases significantly. In order to reuse the waste absorption liquid, flocculation-precipitation method is mainly applied to precipitate the impurities, which requires hundreds of times the concentration of impurities and generates additional waste. In this study, a process for removing Cu ion impurities from cyclone electrolyzer by electrolytic reduction is presented in a small-scale facility without additional waste. It was confirmed that Cu ion impurities can be removed down to 1 ppm by electrolytic reduction process, and to further improve the removal rate, the mass transfer rate was increased by using a cyclone electrolyzer. The removal rate of Cu ions increased with the increase of flow rate and current density, and it was confirmed that Cu was removed at a rate of 1.48 ppm/h under the condition of 330 mL/sec and 2.5 mA/cm2.

A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle (연소기 후치 가스터빈에 관한 열역학적 연구)

  • Park, J.K.;Ohu, S.C.;Yang, O.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF

Performance analysis of a cooling system with refrigerant in a marine absorption refrigerator (선박용 흡수식 냉동기의 냉매적용 냉각 시스템 성능 분석)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.282-287
    • /
    • 2016
  • Recently in order to protect the ocean environment and to reduce energy consumption, shipbuilders have been developing highly economized ships. This research analyzed the possibility of adopting the onshore absorption refrigerator to offshore ships having a cooling system with refrigerant by using the waiste heat of the engine jacket cooling water instead of compression refrigerators. The results showed that R236fa could be a suitable medium for absorbing the heat of the absorber and condenser in an absorption refrigerator. The cooling system using R236fa achieved a high COP of 0.798, which is 15% and 5% higher than an air cooling system with a cooling tower and a water cooling system with a heat exchanger, respectively. The cooling system with R236fa achieved high efficiency with a 25% reduction in flow rate of LiBr solution and only 15.7% flow rate of cooling medium as compared to the water cooling system. The heating of sea water by the engine jacket water flowing out from the generator can prevent the crystallization of LiBr solution due to the low temperature of sea water.

A Study on Performance and Reactor Behavior of Chemical Refrigerator (화학식 냉동기의 성능 및 반응기 거동에 관한 연구)

  • Park, Seung-Hoon;Lee, Jong-Ho
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • A chemical heat pump based on the reversible reactions between metal chlorides and ammonia gas is attractive alternative to compression system and liquid absorption systems in cooling and refrigerating fields. The advantages of chemical heat pump are no regulatory constants due to CFC refrigerants, utilization of gas, industrial waste heat, electricity, fuel oil etc. as heat sources and wide applications to energy storage system, large-scale energy managements for industrial process. The scale-up of chemical heat pump from laboratory prototype to pilot plants necessitates the interpretation of system performance and evaluation of dynamic behavior in the chemical reactor. This study contains the prediction of performance of chemical refrigerator according to operating condition, the dynamic simulations through reactor modelling, which is used for the calculation of reactive medium temperature and the conversion variation with reactor cooling temperature, and the effect survey of block parameters on the power of refrigerator.

  • PDF

Numerical Analysis of a Plate Type Generator for Ammonia/Water Absorption Refrigerators (암모니아/물 흡수식 냉동기의 판형 재생기의 수치해석)

  • Ji, Je-Hwan;Jeong, Eun-Soo;Jeong, Si-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.304-310
    • /
    • 2001
  • A numerical model which simulates the heat and mass transfer processes within a counter-current plate type generator for ammonia/water absorption refrigerators was developed. Ammonia/water solution flows downward under gravity and ammonia/water vapor generated by flow boiling flows upward. The flow pattern within the generator was assumed to be a bubbly flow, and the liquid and vapor phase were assumed to be saturated. It was shown that the boiling of ammonia occurred mainly in the upper part of the generator. The effects of the generator length, the wall temperature and the mass flow rate of ammonia/water solution into the generator on the generation of ammonia/water vapor were investigated.

  • PDF

Effects of Hydrophilic Surface Treatment on Evaporation Heat Transfer at the Outside Wall of Horizontal Tubes (친수성 표면처리가 수평관 외벽의 증발열전달에 미치는 영향)

  • 박노성;황규대;강병하;정진택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.525-532
    • /
    • 2000
  • Evaporation heat transfer characteristics have been investigated experimentally when distilled water is sprayed on the outside wall of horizontal tubes in a evaporator. This problem is of particular interest in the design of evaporator of an absorption system. Hydrophilic surface treatment was employed to increase the wettability on copper tubes. The results indicate that evaporation heat transfer with hydrophilic tubes is shown to be 25-44% higher than that with bare tubes at evaporation pressure of 31.8 Torr(evaporation temperature$ 30^{\circ}C). Evaporation heat transfer rates of hydrophilic treatment tubes are improved substantially, comparing with those of conventional copper tubes in the wide range of operating parameters, such as water inlet temperatures, water mass flow rates and evaporation pressures.

  • PDF