• 제목/요약/키워드: Absorption power

검색결과 852건 처리시간 0.032초

열적 피로에 의한 전원코드의 발화 특성과 전기화재 분석에 관한 연구 (A Study on the Electrical-Fire Analysis and Firing Characteristics of Power Cord by Thermal Stress)

  • 최충석;송길목;김향곤;김동욱;김동우
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2003년도 춘계학술논문발표회논문집
    • /
    • pp.164-170
    • /
    • 2003
  • In this paper, we studied on the firing characteristics and electrical fire analysis of power cord deteriorated by thermal stress. The cross section of PVC insulating cord deteriorated by indirect flame decreased through heat convection. PVC insulating cord deteriorated by direct flame was bumpy shape. The exothermic peak of normal cord was shown at ($526.7^{\circ}C$), but the peaks or on(heat treatment temperature) ($150^{\circ}C$) cord was shown at ($299.6^{\circ}C$) and [$502.2^{\circ}C$]. The exothermic peaks according to high temperature were similar to those of amorphous carbon. In the FT-IR analysis, the absorption peak of normal cord indicated double bond of oxygen and carbon in benzene ring at 1720.0$cm^{1}$. As the HTT was high, the height of characteristic peak decreased and the peak of carbonyl group was shown at about 1625.7$cm^{-1}$. The characteristic peak of single bond(O-H) was shown at about 3479.2$cm^{-1}$. In case of the internal part of wire covering deteriorated by over current, the characteristic peak were shown at about 3417.3$cm^{-1}$ and 1600.2$cm^{-1}$. The above results show that we can distinguish the differences according to the fire pattern through the internalㆍexternal analysis of wire covering deteriorated by heat.

  • PDF

Power 및 temperature에 의한 증착률 변화와 Al-doped ZnO의 특성변화에 관한 연구

  • 안시현;박철민;조재현;장경수;백경현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.107-107
    • /
    • 2011
  • 오늘 날 transparent conductive oxide는 다양한 분야에서 활용되고 있다. 최근에는 태양전지 분야에서도 많이 활용되고 있으며, 초기에는 transmittance 및 낮은 sheet resistance 특성을 가지는 ITO가 많이 활용되었지만 thin film solar cell와 같이 hydrogenation 공정에 약한 ITO보다는 Al-doped ZnO가 사용되기 시작하면서 많은 연구가 진행되고 있다. 본 연구에서는 thin film solar cell 및 silicon heterojunction solar cell에 적용 가능한 Al-doped ZnO에 관한 연구로써 a-Si:H의 Si-H bonds에 영향을 주지 않는 낮은 영역의 substrate temperature와 power로 Al-doped ZnO를 형성하고 상기 parameter에 따른 Al-doped ZnO의 특성 변화에 대해서 분석하였다. 특히 substrate temperature가 변화할수록 carrier concentration 및 sheet resistance가 많은 변화를 보였으며 이로 인하여 transmittance 특성이 온도에 따라 좋아지다가 너무 높은 온도에서는 오히려 좋지 않게 되었다. 이는 너무 높은 carrier concentration은 free carrier absorption에 의해 transmittance 특성을 오히려 좋지 않게 한다. 우리는 본 연구를 통해 92.677% (450 nm), 90.309% (545 nm), 94.333% (800 nm)의 transmittance를 얻을 수 있었다.

  • PDF

화력발전소 발생 플라이애쉬를 이용한 인공골재 제조 (Fabrication of Lightweight Aggregates Using Fly Ash from Coal Burning Heat Power Plant)

  • 윤수종
    • 한국분말재료학회지
    • /
    • 제13권2호
    • /
    • pp.102-107
    • /
    • 2006
  • Recycling industrial wastes such as fly ash from a coal burning heat power plant and shell from an oyster farming were investigated to prevent environment contamination as well as to enhance the value of recycling materials. In this study, the lightweight aggregates and the red bricks were fabricated from fly ashes with other inorganic materials and wastes. The starting materials of the lightweight aggregate were fly ash powder and water glass, and the compacts of these materials were heat treated at $1100^{\circ}C$. The fabricated lightweight aggregates had low bulk density, $0.9-1.2\;g/cm^3$, hence floated on the water and had the strength of 7.0-11.0 MPa and the modulus of 2900-3300 MPa which indicates it has enough strength as the aggregate. Another type of the light weight aggregate was prepared from fly ashes, shell powders and clays. The bulk density, porosity, and compressive strength of these aggregates were $1.19-1.34\;g/cm^3,\;18.3{\sim}56.1%$ and 5-12 MPa, respectively. The addition of a small amount of fly ash powder prevented hydration of the light weight aggregates. The red brick was also fabricated from the fly ash containing materials. It is suitable for the brick facing of a building as it has moderate strength and low water absorption rate.

방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구 (In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery)

  • 한다슬;남경완
    • 세라미스트
    • /
    • 제22권4호
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Numerical Analysis of Loss Power Properties in the Near-Field Electromagnetic Wave Through A Microstrip Line for Multilayer Magnetic Films with Different Levels of Electrical Conductivity

  • Lee, Jung-Hwan;Kim, Sang-Woo
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.92-96
    • /
    • 2008
  • There are few reports of high frequency loss behavior in the near-field for magnetic films with semiconducting properties, even though semiconducting magnetic materials, such as soft magnetic amorphous alloys and nanocrystalline thin films, have been demonstrated. The electromagnetic loss behavior of multilayer magnetic films with semiconducting properties on the microstrip line in quasi-microwave frequency band was analyzed numerically using a commercial finite-element based electromagnetic solver. The large increase in the absorption performance and broadband characteristics of the semiconducting/insulating layer magnetic films examined in this study were attributed to an increase in the loss factor of resistive loss. The electromagnetic reflection increased significantly with increasing conductivity, and the loss power deteriorated significantly. The numerical results of the magnetic field distribution showed that a strong radiated signal on the microstrip line was emitted with increasing conductivity and decreasing film thickness due to re-reflection of the radiated wave from the surface of the magnetic film, even though the emitted levels varied with film thickness.

Pin Power Distribution Determined by Analyzing the Rotational Gamma Scanning Data of HANARO Fuel Bundle

  • Lee, Jae-Yun;Park, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.452-461
    • /
    • 1998
  • The pin power distribution is determined by analyzing the rotational gamma scanning data for 36 element fuel bundle of HANARO. A fission monitor of Nb$^{95}$ is chosen by considering the criteria of the half-life, fission yield, emitting ${\gamma}$-ray energy and probability. The ${\gamma}$-ray spectra were measured in Korea Atomic Energy Research Institute(KAERI) by using a HPGe detector and by rotating the fuel bundle at steps of 10$^{\circ}$. The counting rates of Nb$^{95}$ 766 keV ${\gamma}$-rays are determined by analyzing the full absorption peak in the spectra. A 36$\times$36 response matrix is obtained from calculating the contribution of each rod at every scanning angle by assuming 2-dimensional and parallel beam approximations for the measuring geometry. In terms of the measured counting rates and the calculated response matrix, an inverse problem is set up for the unknown distribution of activity concentrations of pins. To select a suitable solving method, the performances of three direct methods and the iterative least-square method are tested by solving simulation examples. The final solution is obtained by using the iterative least-square method that shows a good stability. The influences of detection error, step size of rotation and the collimator width are discussed on the accuracy of the numerical solution. Hence an improvement in the accuracy of the solution is proposed by reducing the collimator width of the scanning arrangement.

  • PDF

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

이종폴리머 접합을 위한 레이저 에너지 최적제어 기법 (Laser Energy Optimization for Dissimilar Polymer Joining)

  • 송치훈;최해운
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.63-69
    • /
    • 2014
  • Dual laser heat sources were used for polymer based material joining. An infrared camera and thermocouple DAQ system were used to correlate the temperature distribution to computer simulation. A 50 degree tilted pre-heating laser source was acting as a heating source to promote the temperature to minimize thermal shock by the following a welding heat source. Based on the experimental result, the skin depth was empirically estimated for computer simulation. The offsets of 3mm, 5mm and 10mm split by weld and preheat were effectively used to control the temperature distribution for the optimal laser joining process. The closer offset resulted in an excessive melting or burning caused by sudden temperature rising. The laser power was split by 50%, 75% and 100% of the weld power, and the best results were found at 50% of preheating. To accurately simulate the physical laser beam absorption and joining optical properties were experimentally measured for the computer FEM simulation. The simulation results showed close correlation between theoretical and experimental results. The developed dual laser process is expected to increase productivity and minimize the cost for the final products.

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

Eclipse Spectrum of Her X-1 Observed by ASCA in the Low Intensity State

  • Choi, C.S.;Seon, K.I.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1995년도 한국우주과학회보 제4권2호
    • /
    • pp.30-30
    • /
    • 1995
  • We present the results of analysis on the X-ray observations of the binary X-ray pulsar Her X-I. made with ASCA/SIS on August 13-14. 1993. An eclipse transition from ingress to egress was fully covered by the observations. The main findings are as follows; (1) a model of power-law plus black-body is required to interpret the entire eclipse spectrum. and the black-body component appears at < 0.7 keV. (2) the power-law continuum which has photon index ${\alpha}\;=\;{0.84^{\;+0.14}}_{\;-0.19}$ is very similar to that of detected by Ginga/LAC (${\alpha}\;=\;0.80\;{\pm}\;0.04$), (3) the calculated eclipse flux of $2^{-10}\;keV.{\;}~{\;}1.8{\pm}10^{-11}{\;}ergs{\;}cm^{-2}s^{-1}$, is consistent with the Ginga observation carried out in the high intensity state ~2.0{\pm}10^{-11}{\;}ergs{\;}cm^{-2}s^{-1}$, (4) there is no significant absorption feature. and an upper limit of the aborption column $NH{\;}\leq{\;}3{\pm}10^{20}\;cm^{-2}$ is determined at the 90% confidence limit. Based on these results, we suggest that extended matter surrounding the binary system should be existed persistently with stable conditions, and scattering of the source continuum by the matter is responsible for the eclipse emission.ission.

  • PDF