• Title/Summary/Keyword: Absorption power

Search Result 849, Processing Time 0.032 seconds

Evaluation of Insulating Oil by Terahertz Time Domain Spectroscopy (테라헤르츠파 분광법에 의한 절연유 특성 평가)

  • Kim Geun-Ju;Jeon Seok-Gy;Sun Jong-Ho;Jin Yun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.411-416
    • /
    • 2006
  • A new method on the evaluation of insulation oil was proposed. Terahertz time-domain spectroscopy (THz-TDS) was applied to investigate the properties of the insulating oil. For the diagnostics of oil degradation, three kinds of oils have been analyzed by THz-TDS. The degraded oil showed different optical and electrical constants compared with a new one. Generally, the power absorption coefficient, the refractive index, the dielectric constant and loss $tan{\delta}$ of the oil increase as the aging of insulating oil proceed. And the characteristics of two kind of insulation oil, 1-4 and 7-4, was compared in terahertz spectral region. Difference in refractive index and complex dielectric constant has been observed between the samples. The results of this study suggest that THz-TDS is a promising new means for evaluating degradation and identification of insulating oil.

Performance Evaluation of Inter-Locking Block Using Fly Ash

  • Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • In this paper, the properties of inter - locking block using fly ash are discussed in order to provide economical advantages and improve quality, and protect environment and recycle resources. Fly ash is the by-product of coal in thermal power plant. The experimental parameters are fly ash content, the amount of AE water - reducing agent and mixing proportion of cement mortar. According to the experimental results, the improvement of quality in the side of strength, absorption ratio and freeze - thaw resistance for manufacturing inter -locking block and the curtailment of cost can be achieved in case of 15% of fly ash and 0.3% of AE water- reducing agent are mixed into mortar mixture of 1 :6(C:S).

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway in Cholla Line (전라선 고가교 방음터널 효과검증)

  • Kim, Byoung-Sam;Lee, Tae-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.667-672
    • /
    • 2007
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF

External Optical Modulator Using a Low-cost Fabry-Perot LD for Multicasting in a WDM-PON

  • Lee, Hyuek-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.227-231
    • /
    • 2011
  • An external optical modulation using absorption s in a Fabry-Perot laser diode (FP-LD), has been proposed and experimentally demonstrated for multicasting in a WDM-PON. The center wavelengths of absorption s in an FP-LD move to short-wavelength rapidly by only a small current (~1 mA) injection. If the current injection is stopped, the s move back to the original position. Such a movement of the s can make the FP-LD act as an external optical modulator, which is found to modulate at a maximum modulation speed of 800 Mbps or more. For a multicasting transmitter in a WDM-PON, the proposed modulator can be cost-effectively applied to a multi-wavelength laser source with the same periodicity of the longitudinal mode. Instead of the multi-wavelength laser source, tunable-LDs are used for experiments. The 32 channel multicasting system with the proposed modulator has been demonstrated, showing power penalties of 1.53~4.15 dB at a bit error rate of $10^{-9}$ with extinction ratios better than 14.5 dB at 622 Mbps.

Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Choi, Jae-Ick;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.227-230
    • /
    • 2005
  • A specific anthropomorphic mannequin (SAM) model was used to investigate the relation between local specific absorption rate (SAR) and head size. The model was scaled to 80 to 100% sized models at intervals of 5%. We assumed that the shell of the SAM model has the same properties as the head-equivalent tissue. Five handsets with a monopole antenna operating at 835 MHz were placed in the approximate cheek position against the scaled SAM models. The handsets had different antenna lengths, antenna positions, body sizes, and external materials. SAR distributions in the scaled SAM models were computed using the finite-difference time-domain method. We found that a larger head causes a distinct increase in the spatial peak 1-voxel SAR, while head size did not significantly change the peak 1-g averaged-SAR and 10-g averaged-SAR values for the same power level delivered to the antenna.

  • PDF

Analysis of Ozone Concentration by TD and Q-mass Method

  • Lee, Dong-Gyu;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • In order to get oxidizing power enough for growth of a superconductive thin film with oxide gas, concentrated ozone was used. As a method for concentrating ozone, a method for concentrating ozone by adsorbing ozone selectively into silica-gel beads is adopted, and this concentration is analyzed by the ultraviolet absorption method, the thermal decomposition method and the Q-mass analyzing method. Thermal decomposition method is most effective for measurement of a high concentration of ozone. Ozone as concentrated by the adsorption method got to have a concentration of 97 mol % at the maximum, and it was identified that the concentration of the ozone gas was stable for the time while a thin film was formed.

Femtosecond Laser Lithography for Maskless PR Patterning (펨토초 레이저를 이용한 미세 PR 패터닝)

  • Sohn, Ik-Bu;Ko, Myeong-Jin;Kim, Young Seop;Noh, Young-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

High-Power Conversion Efficiency of Photovoltaic Cells Fabricated with a Small-molecular and Polymer Donating Blend Layer

  • Kim, Ji-Heon;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.48-52
    • /
    • 2014
  • A photovoltaic cell of CuPc:P3HT:PCBM was introduced to extend the light absorption in the visible wavelength between 300~500 and 550~800 nm. By fabricating the photovoltaic cells of ITO / PEDOT:PSS / CuPc:P3HT:PCBM / BCP / Al with small-molecular and polymer donating materials blended layer, we demonstrated a high PCE of 4.20% with high Jsc of $10.05mA/cm^2$. This performance of photovoltaic cell with the blended layer of small-molecular and polymer can be competitive with that of tandem cells.

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF

Molecular Thin Films and Small-molecule Organic Photovoltaics

  • Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.63-63
    • /
    • 2011
  • In this tutorial session, the field of organic photovoltaic (OPV) cells based on small molecular weight materials will be presented. The previously reported studies on the fabrication, structure, and property of the cells as well as the molecular materials are included. Especially, the factors hampering further enhancement in the power conversion efficiency of the cells such as exciton recombination, light absorption and interfacial morphology between electron donor and acceptor layer will be discussed in detail. The recent progress in our group will also be presented. It includes typical materials and cell fabrication techniques we used as well as the studies on improving the light absorption in the electron donor layer and reducing the extinction of excitons formed by introducing the nanostructured interface between organic layers.

  • PDF