• Title/Summary/Keyword: Absorption cross section

Search Result 131, Processing Time 0.026 seconds

Sound Absorption Rate and Sound Transmission Loss of CLT Wall Panels Composed of Larch Square Timber Core and Plywood Cross Band

  • Kang, Chun Won;Jang, Sang Sik;Kang, Ho Yang;Li, Chengyuan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • The square timbers of larch having cross section of $90mm{\times}90mm$ were glued laterally to be formed $1,200mm{\times}2,400mm$ panels which were used as cores for CLT wall panels. Then, structural plywood panels having size of $1,200mm{\times}2,400mm$ were used as cross band covering the small square timber cores to manufacture CLT wall panels. The sound absorption rate of CLT wall panels and polyester board attached CLT wall panels were investigated. The mean sound absorption coefficients of the former and the latter in the frequency range of 100-6400 Hz were 0.21 and 0.74, respectively. The noise reduction coefficients (NRC) of those were 0.21 and 0.40, respectively. Also, the mean sound transmission loss of CLT wood panel in the frequency range of 50-1600 Hz was 45.12 dB and that value at the frequency of 500 Hz was 42.49 dB. It was suggested that the polyester board attached CLT wall panels could be used as housing wall because of its high sound absorption rate and high sound transmission loss.

A Study on Surface and Cross-section Properties Depending on the Process Parameters of Laser Depositions with Metal Powders (SUS316L and IN718) (공정 파라미터에 따른 금속분말(SUS316L, IN718) 레이저 적층 표면 및 단면 특성 분석)

  • Hwang, JunHo;Shin, SeongSeon;Lee, JongHoon;Kim, SungWook;Kim, HyunDeok
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.28-34
    • /
    • 2017
  • The authors derived the criteria on the process parameters of laser depositions with metal powers(SUS316L & IN718) by evaluating the surface and cross-section properties of the deposition layers. The surface characteristics of the deposition layer are investigated through optical microscopy by controlling the process parameters of laser output, powder feeding rate and gas feeding rate. The cross-section characteristics were also analyzed after polishing and chemical etching process. As the gas feeding rate increased, the amount of powder loss increased and the difference in the dilution ratio and heat affected zone depending on laser outputs was observed. In addition, the powder feeding rate used in the experiment did not interfere with the energy absorption of the base material.

Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju (광주 지역에서 aethalometer 측정 블랙 카본 입자의 질량흡수단면 평가)

  • Park, Seung-Shik;Yu, Geun-Hye;Lee, Sang-Il;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.727-734
    • /
    • 2018
  • In this study, real-time absorption coefficients of carbonaceous species in $PM_{2.5}$ was observed using a dual-spot 7-wavelength Aethalometer between November 1, 2016 and December 31, 2017 at an urban site of Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were simultaneously collected at the same site and analyzed for organic carbon and elemental carbon (OC and EC) using the thermal-optical transmittance protocol. A main objective of this study was to estimate mass absorption cross section (MAC) values of black carbon (BC) particles at the study site using the linear regression between aethalometer-based absorption coefficient and filter-based EC concentration. BC particles observed at 880 nm is mainly emitted from combustion of fossil fuels, and their concentration is typically reported as equivalent BC concentration (eBC). eBC concentration calculated using MAC value of $7.77m^2/g$ at wavelength of 880 nm, which was proposed by a manufacturer, ranged from 0.3 to $7.4{\mu}g/m^3$ with an average value of $1.9{\pm}1.2{\mu}g/m^3$, accounting for 7.3% (1.5~20.9%) of $PM_{2.5}$. The relationship between aerosol absorption coefficients at 880 nm and EC concentrations provided BC MAC value of $15.2m^2/g$, ranging from 11.4 to $16.2m^2/g$. The eBC concentrations calculated using the estimated MAC of $15.2m^2/g$ were significantly lower than those reported originally from aethalometer, and ranged from 0.2 to $3.8{\mu}g/m^3$, with an average of $1.0{\pm}0.6{\mu}g/m^3$, accounting for 3.7% of $PM_{2.5}$ (0.8~10.7%). Result from this study suggests that if the MAC value recommended by the manufacturer is applied to calculate the equivalent BC concentration and radiative forcing due to BC absorption, they would result in significant errors, implying investigation of an unique MAC value of BC particles at a study site.

The water absorption of wood by water-soaking time (수침시간(水浸時間)에 의(依)한 목재(木材)의 흡수성(吸收性))

  • Lee, Won Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.7 no.1
    • /
    • pp.3-7
    • /
    • 1968
  • The Capacity of wood to absorb water is very important as the basis data for wood industry, particularly in preservatives impregnation, manufacturing of improved wood, selection of packing boards, etc. In this study differences in Water absorbing Capacity of wood by structual section, water soaking time were investigated. (1) The species used in this investigation were Larix olgensis Henry Var. Koreana Nakai and Juglans mandshurica Max., and dimension of these testing wood block was $30{\times}30{\times}100cm$; and these were soaked in fresh water of $25{\pm}1^{\circ}C$ for 8.5day and 0.5 day, before measurement. (2) The result showed that the water absorption by cross sections was greater than by either radial or tangential section and there were no differences between radial and tangential section. (3) The water absorption of Juglans mandshurica Max. which has the relatively low specific gravity was greater than Larix olgensis Henry Var. Koreana Nakai which has generally high specific gravity. (4) The result showed an increase in the absorbed water with increase in the length of soaking time. However the water absorption rate during the early period of soaking was very high and thereafter the rate decreased with passage of time. More than a half of the total water absorption was achieved during the first 2 days approximately. (5) The relationships between the length of the soaking-time and water absorption were found to be as follows : Larix olgensis Henry Var. Koreana Nakai Cross section : $y=111.1{\times}^{0.6516}$ radial section : $y=32.2{\times}^{0.5146}$ tangential section : $y=36.5{\times}^{0.5112}$ Juglans mandshurica Max. Cross section : $y=216.1{\times}^{0.5914}$ radial section : $y=27.9{\times}^{0.5832}$ tangential section : $y=50.9{\times}^{0.4769}$ Where : y is amount of water absorption ($mg/cm^2$) x is water-soaking time (days).

  • PDF

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood (참오동나무의 열처리가 기체투과성, 흡음율과 음향투과손실에 미치는 영향)

  • KANG, Chun-Won;JANG, Eun-Suk;JANG, Sang-Sik;Cho, Jae-Ik;KIM, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.644-654
    • /
    • 2019
  • In this study, the gas permeability, sound absorption coefficient, and sound transmission loss of the Paulownia tomentosa wood were estimated using capillary flow porometry, transfer function method, and transfer matrix method, respectively. The longitudinal specific permeability constant of the Paulownia tomentosa wood with a thickness of 20 mm was 0.254 for the control sample and 0.279, 0.314, and 0.452 after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$, respectively. The gas permeability was observed to be slightly increased by the heat treatment. The mean sound absorption coefficients of 20-mm thick Paulownia tomentosa log cross-section for the control sample and after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.101, 0.109, 0.096 and 0.106, respectively. Further, the noise reduction coefficients of 20-mm thick Paulownia tomentosa log cross-section of the control sample and after being subjected to heat treatment at temperatures of $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.060, 0.067, 0.062 and 0.071, respectively. The mean of sound transmission loss of the 20-mm thick Paulownia tomentosa log cross-section was approximately 36.93 dB. Furthermore, the gas permeability and sound absorption coefficient of the heat-treated Paulownia tomentosa discs slightly increased depending on the heat treatment temperature; however, the rate of increase was insignificant.

A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis (열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.

Three-Dimensional Borehole Radar Modeling (3차원 시추공 레이다 모델링)

  • 예병주
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

Spectroscopic properties of Er3+/Yb3+ co-doped fluorophosphate glasses for NIR luminescence and optical temperature sensor applications

  • Linganna, K.;Agawane, G.L.;In, Jung-Hwan;Park, June;Choi, Ju H.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.236-243
    • /
    • 2018
  • A series of $Er^{3+}/Yb^{3+}$ co-doped fluorophosphate glasses with varying $YbF_3$ concentration were prepared by a high temperature melt quenching technique. Absorption and emission cross-sections were determined by using the McCumber theory. The larger emission cross-section ($9.86{\times}10^{-21}cm^2$) and longer fluorescence lifetime (12.37 ms) were obtained for the $^4I_{13/2}{\rightarrow}^4I_{15/2}$ transition of ABS3Er4Yb glass. The sensitivity and temperature of the maximum sensitivity were evaluated by the fluorescence intensity ratio method from the measured upconversion spectra. The results were discussed and compared to the other reported glasses.