• Title/Summary/Keyword: Absorption band

Search Result 985, Processing Time 0.023 seconds

Relationship between the Molecular Structure and the Absorption Band Shape of Organic Dye (유기색소의 흡수대 형태와 분자구조와의 상관성)

  • Jun, Kun;Gwon, Seon Yeong;Kim, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • Molecules always show broad absorption band envelopes, and this results from the vibrational properties of bonds. The width of an absorption band can have an important influence on the color of a dye. A narrow band imparts a bright, spectrally pure color to the dye, whereas a broad band can give the same hue, but with a much duller appearance. Typically, half-band widths of cyanine dyes are about 25nm compared to value of over 50nm for typical merocyanine dyes. Thus, cyanine dyes are exceptionally bright. The factors influencing the width of an absorption band can be understood with reference to the Morse curves. The width of the absorption band depends on how closely the bond order of the molecules in the first excited state resembles that in the ground state. We have quantitatively evaluated the "molecular structure-absorption band shape" relationship of dye molecules by means of Pariser-Parr-Pople Molecular Orbital Method(PPP-MO).

Ultrathin Metamaterial for Polarization Independent Perfect Absorption and Band-pass Filter

  • Zhang, Xu;Gong, Zhijie
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.665-672
    • /
    • 2015
  • We demonstrate an ultrathin metamaterial for polarization independent perfect absorption as well as a band-pass filter (BPF) which works at a higher frequency band compared to the perfect absorption band. The planar metamaterial is comprised of three layers, symmetric split ring resonators (SSRRs) at the front and structured ground plane (SGP) at the back separated by a dielectric layer. The perfect metamaterial absorber (MA) can realize near 100% absorption due to high electromagnetic losses from the electric and/or magnetic resonances within a certain frequency band. The thickness of the structure is only 1/28 of the maximum absorption wavelength.

Optical Characterization of Azo-dye Attached on Photonic Crystal: The Cause of Large Absorption Band Shift

  • Kim, Byoung-Ju;Kwon, Ki-Chul;Yu, A-Reum;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.43-46
    • /
    • 2017
  • Large absorption band shift has been observed for the azo-dye (disperse red-13, DR-13) attached on the surface of silica spheres. Urethane linkage has been utilized to form covalent bond between azo-dye (-OH) and 3-isocyanatopropyltriethoxysilane (ICPTES, -N=C=O). The synthesized ICPTES-DR-13 (ICPDR) molecules were attached to the silica spheres by the hydrolysis and condensation reaction. Although the absorption peak of DR-13 in methanol is at 510 nm, the absorption peak of the ICPDR-silica spheres shifts to 788 nm. The large absorption peak shift is due to the formation of intramolecular charge-transfer band with large aggregated ICPDR.

Reflectance of Geological Media by Using a Field spectrometer in the Ungsang Area, Kyungsang Basin

  • Kang, Kyung-Kuk;Song, Kyo-Young;Ahn, Chung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2001
  • Using a field spectrometer having a spectral range of 0.4$\mu\textrm{m}$~2.5$\mu\textrm{m}$ with a spectral resolution of 1nm, the researchers measured the reflectance of granite, andesitic rocks, sedimentary rocks, and pyrophyllite ore in the Ungsang area, Kyungsang Basin, South Korea. Spectral characteristics of the geological media were investigated from the analysis. The in-situ measured sites were selected in well exposed rock outcrops. In case of unfavorable weather conditions, rocks were sampled and remeasured under natural solar condition. The reflectance of field data was measurd at three sistes for granite, six sites for andesitic rock three sites for sedimentary rocks, and two sites for pyrophyllite ore. The vibrational absorption bands for pyrophyllite are detected in the spectral range of 2.0$\mu\textrm{m}$~2.5$\mu\textrm{m}$. The absorption band for granites in study area is not distinctive. The reflectance measured under normal field conditions showed strong absorption at wavelengths of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ due to the effect of moisture in the atmosphere. After the bands of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ were removed, Hull Quotient method was applied to characterize absorption bands. The reflectances of field data were calculated to estimate the band ratio corresponding to the Landsat TM and EOS Terra ASTER. The researchers suggest here that the TM band2, band3, band4, and band7 or ASTER band2, band3, band4, and band9 are the best combination for discriminating outcrops. The researchers tested and demonstrated using a Landsat TM image in the study area. For geologic applications, decorrelation stretch is also an effective tool to enhance the exposed rock mass in images.

Photoluminescence Excitation Spectroscopy Studies of Anodically Etched and Oxidized Porous Zn

  • Chang, Sung-Sik;Lee, Hyung-Jik
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.359-363
    • /
    • 2004
  • Photoluminescence excitation (PLE) spectroscopy studies were performed for anodically etched porous Zn, which exhibited a PL in the blue/violet spectral range peaking at 420 nm (2.95 eV), and oxidzed porous Zn at 380$^{\circ}C$ for 10 min and 12 h. A broad absorption band was observed at 4.07 eV (305 nm), 3.49 (355 nm) for anodically etched porous Zn. In contrast, both the oxidized porous Zn and sintered ZnO exhibited an almost identical one broad absorption band at 3.85 eV (322 nm), when PLE spectra were measured at 378 nm (3.28 eV). The oxidized porous Zn and sintered ZnO, which displayed both UV and green luminescence band, showed an additional absorption band at 389 nm (3.19 eV) and 467 nm (2.66 eV). In contrast, no significant absorption band was detected for a 10-min oxidized porous Zn, which only displayed one UV luminescence void of deep-level luminescence. These absorption bands determined by PLE studies enabled a clear understanding of an emission mechanism for the UV and green luminescence from ZnO.

A Study on Absorption Properties of the EM Wave Absorber Using TiO2 in W-band

  • Choi, Chang-Mook;Ko, Kwang-Soob
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.111-115
    • /
    • 2010
  • In this paper, the electromagnetic (EM) wave absorbers using TiO2 as a dielectric material with chlorinated polyethylene (CPE) were investigated in W-band radio frequencies. We compared the relative permittivity with reflectionless curve and the absorption properties of samples containing 40 wt.%, 50 wt.%, 60 wt.%, 70 wt.%, and 80 wt.% TiO2. It is possible to realize a complex relative permittivity satisfying the reflectionless condition by choosing composition ratio of TiO2. The optimized composition ratio of TiO2 for the maximum absorption property is about 70 wt.%. As a result, we have confirmed the realization of an EM wave absorber with a high absorption property in W-band radio frequencies.

Dual-wide-band absorber of truncated-cone structure, based on metamaterial

  • Kim, Y.J.;Yoo, Y.J.;Rhee, J.Y.;Kim, K.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.1-235.1
    • /
    • 2015
  • Artificially-engineered materials, whose electromagnetic properties are not available in nature, such as negative reflective index, are called metamaterials (MMs). Although many scientists have investigated MMs for negative-reflective-index properties at the beginning, their interests have been extended to many other fields comprising perfect lenses. Among various kinds of MMs, metamaterial absorbers (MM-As) mimic the blackbody through minimizing transmission and reflection. In order to maximize absorption, the real and the imaginary parts of the permittivity and permeability of MM-As should be adjusted to possess the same impedance as that of free space. We propose a dual-wide-band and polarization-independent MM-A. It is basically a triple-layer structure made of metal/dielectric multilayered truncated cones. The multilayered truncated cones are periodically arranged and play a role of meta-atoms. We realize not only a wide-band absorption, which utilizes the fundamental magnetic resonances, but also another wide-band absorption in the high-frequency range based on the third-harmonic resonances, in both simulation and experiment. In simulation, the absorption bands with absorption higher than 90% are 3.93 - 6.05 GHz and 11.64 - 14.55 GHz, while the experimental absorption bands are in 3.88 - 6.08 GHz and 9.95 - 13.84 GHz. The physical origins of these absorption bands are elucidated. Additionally, it is also polarization-independent because of its circularly symmetric structures. Our design is scalable to smaller size for the infrared and the visible ranges.

  • PDF

Analysis of EM Wave Absorption Properties in W-band using $TiO_2$ (W-대역에서 유전손실재료인 $TiO_2$의 전파흡수 특성 분석)

  • Choi, Chang-Mook;Kim, Dong-Il;Ko, Kwang-Soobl
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.95-98
    • /
    • 2007
  • In this paper, we make an analysis of electromagnetic wave absorption properties of $TiO_2$ in W-band. Therefore, we fabricated some samples in different composition ratio of $TiO_2$ and CPE. And the material properties of samples are calculated from S-parameter of samples using $\ell-2\ell$ method. We analyze absorption properties and complex relative permittivitis of samples. As a result, it has verified that absorption properties of sample containing $TiO_2:CPE=70:30wt.%$ have been excelled in W-band.

  • PDF

A Yew Technique for Infrared Spectroscopy using Polyethylene Film Cell (Polyethylene Film을 利用한 赤外線分光分析用 Cell)

  • Sung, Chwa-Kyung;Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1963
  • Authors propose a new technique using polyethylene film instead of sodium chloride window as a cell material. Nujol mulls, liquids and aqueous solutions are sandwitched between two pieces of polyethylene film which are held between cardboards. Ordinary lead or stainless steel spacers could be used if exact cell thickness is desired. A more elaborate cell can be assembled by injecting samples between two pieces of polyethylene film which are placed between sodium chloride windows of ordinary demountable liquid cell. The absorption bands due to polyethylene and Nujol are compensated by placing the polyethylene film of suitable thickness in the reference beam. The absorption bands due to solvents such as water can also be compensated by the polyethylene film cell sandwitched solvent of suitable thickness in the reference beam. This method would be a simple new technique. Especially this technique may offer a new helpful way for the investigation of the state of substances in aqueous system. Using this technique, authors have observed the appearance of an absorption bands at 3.2 micron, in the spectrum of phenol in aqueous solution, that is absent in the spectrum of phenol in benzene solution. The same absorption band also has been observed in the spectra of aqueous formaldehyde solution and aqueous polyvinyl alcohol solution, where the absorption bands due to polyethylene and water are compensated. Although it may be regarded that this absorption band is related to the intermolecular interaction between water and the solute having OH group, that is hydrogen bonding. The exact assignment of this absorption band is out of this work.

  • PDF

Photoresponsive Azobenzene-cored Dendrons with Terminal Vinyl Groups

  • Choi, Dae-Ock;Lee, Ji-Hye;Shin, Kyong-Ha;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.983-989
    • /
    • 2007
  • Azobenzene-cored dendrons having the photoisomerizable azobenzene core and terminal vinyl groups have been prepared. Absorption bands of azobenzene-cored dendrons are similar except more intense 280 nm band in higher generation azobenzene dendron. All three azobenzene-cored dendrons show reversible photoisomerization similar to simple azobenzene, irrespective of the generation of dendron. On 350 nm irradiation, absorption band around 344 nm decreases and 436 nm band increases. Photoisomerization reactions are very fast for all three azobenzene-cored dendron and the reaction efficiency is dependent of its generation and solvent. In the dark, slow thermal reversion to original absorption spectrum is observed.