• Title/Summary/Keyword: Absorption Rate

검색결과 2,232건 처리시간 0.037초

Operating Characteristics of a Bubble Pump for Diffusion-Absorption Refrigerator (확산형 흡수식 냉동기용 기포펌프의 운전특성에 관한 연구)

  • 이현경;김선창;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제13권9호
    • /
    • pp.878-887
    • /
    • 2001
  • Experimental investigation has been carried out to examine the operating characteristics of a bubble pump for diffusion absorption refrigerator. The effects of heat input and delivery height on generation rate of refrigerant vapor and circulation rate of solution have been investigated. as a result heat input and delivery height increase, circulation rate of solution increases. And the smaller the tube diameter, the larger the circulation rate of solution. Pumping ratio increases to a critical point and then decrease with the increase of heat input, and it increases with the increase in delivery height. In this paper, Marcus's analytical theory was also examined. It was found that the Marcus\`s analytical theory of a bubble pump was not appropriate for a bubble pump using ammonia aqueous solution as a working fluid.

  • PDF

Experimental Performance Study of the Bubble Pump for the Diffusion Absorption Refrigerating System (확산형 흡수식 냉동시스템의 기포펌프 성능실험)

  • 이재효;정의갑;윤재호;정의갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제16권3호
    • /
    • pp.287-292
    • /
    • 2004
  • An experimental investigation was carried out to study the performance of a bubble pump for the diffusion absorption refrigerating system. Ammonia was used as the refrigerant and the helium was charged in order to balance the pressure between the low and high pressure side. As experimental variables, the concentration of ammonia charged into system, heat input, and the pressure of helium were selected. Experimental results show that the generation rate of ammonia vapor and the circulation rate of diluted ammonia solution were increased as the heat input increases, but the ratio of the solution to vapor flow rate was decreased. The generation rate of refrigerant vapor and the circulation rate of diluted ammonia solution increased as the system pressure decreased. Finally under the condition of 25 bars, the concentration of rich ammonia solution was not affected by the generation rate of ammonia vapor and the circulation of diluted ammonia solution.

Effect of degree of superheat of LiBr aqueous solution on the vapor absorption process for an air-cooled absorption cooling system (공냉형 흡수식 냉방 시스템에서 LiBr 수용액의 과열도가 증기 흡수에 미치는 영향)

  • Kim, S.C.;Oh, M.D.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제9권2호
    • /
    • pp.122-133
    • /
    • 1997
  • Numerical analysis using finite volume method has been carried out to examine the effect of degree of superheat of LiBr aqueous solution on heat and mass transfer occurred in absorption process. According to the result of this study, it was found that refrigerant vaper was generated at the entrance region of absorber when LiBr aqueous soltion was superheated. As the degree of superheat increases, heat transfer rate increases and vapor absorption rate decreases. The increase in averaged Nusselt and Sherwood numbers could be found as film Reynolds number increases. The larger the degree of superheat, the greater the averaged Nusselt and Sherwood numbers.

  • PDF

Electron Spin Resonance (ESR) and Microwave Absorption Studies of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Hyperthermia Applications

  • Choi, Yong-Ho;Yi, Terry;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • 제48권6호
    • /
    • pp.577-583
    • /
    • 2011
  • Stabilized biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) were prepared by controlled coprecipitation method for hyperthermia application. ESR measurements determined that all of the interactions in the individual SPIONs (1 nm and 11 nm) were antiferromagnetic in nature because the ions contributed to the magnetization with a range of magnetic moments. In-situ monitoring of the temperature increment was performed, showing that the microwave absorption rate of the SPIONs was dispersed in an appropriate host media (polar or non-polar solvents) during microwave irradiation. Microwave absorption energy rates and heat loss of SPIONs in solvent were calculated by non-linear data fitting with an energy balance equation. The microwave absorption rates of SPIONs dispersed in solvent linearly increases when the concentration of SPIONs increases, implying that the microwave absorption rate can be tunable by changing the concentration of SPIONs.

CO2 Absorption Characteristics of Physical Solvent at High Pressure (고압에서 물리흡수제의 이산화탄소 흡수 특성 연구)

  • Eom, Yongseok;Kim, Eunae;Kim, Junhan;Chun, Sungnam;Lee, Jungbin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제24권4호
    • /
    • pp.334-339
    • /
    • 2013
  • In this study, as a candidate of the carbon dioxide ($CO_2$) absorbents, the mixture solution of polyethylene glycol dimethyl ether (PEGDME) and tetrahydrofuran (THF) were investigated. $CO_2$ absorption rate was measured by using high pressure $CO_2$ screening equipment in the range of 1 - 10wt% THF. Absorption capacity of the mixture solution was also estimated. Based on the results, we found that mixture solution containing THF had higher absorption rate and $CO_2$ loading capacity compared to PEGDME at $25^{\circ}C$.

Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor

  • Ho, Chii-Dong;Sung, Yun-Jen;Chen, Wei-Ting;Tsai, Feng-Chi
    • Membrane and Water Treatment
    • /
    • 제8권1호
    • /
    • pp.35-50
    • /
    • 2017
  • The theoretical membrane gas absorption module treatments in a hollow fiber gas-liquid membrane contactor using Happel's free surface model were obtained under countercurrent-flow operations. The analytical solutions were obtained using the separated variable method with an orthogonal expansion technique extended in power series. The $CO_2$ concentration in the liquid absorbent, total absorption rate and absorption efficiency were calculated theoretically and experimentally with the liquid absorbent flow rate, gas feed flow rate and initial $CO_2$ concentration in the gas feed as parameters. The improvements in device performance under countercurrent-flow operations to increase the absorption efficiency in a carbon dioxide and nitrogen gas feed mixture using a pure water liquid absorbent were achieved and compared with those in the concurrent-flow operation. Both good qualitative and quantitative agreements were achieved between the experimental results and theoretical predictions for countercurrent flow in a hollow fiber gas-liquid membrane contactor with accuracy of $6.62{\times}10^{-2}{\leq}E{\leq}8.98{\times}10^{-2}$.

Experimental Studies on the Characteristics of Foaming Mortar(I)- Part 1 characteristics of bulk density and absorption rate - (기포모르터의 제특성에 관한 실험적 연구-제1보 밀도와 흡수율 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제30권1호
    • /
    • pp.73-80
    • /
    • 1988
  • This study was performed to obtain the basic data which can be applied to use of foaming mortars. The results obtained were Summarized as follows; 1.At the mixing ratio of 1:1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The decreasing rates of bulk densities were increased in richer mixing ratio and more addition of foaming agent. 2.The bulk densities were decreased up to 38.8-55.9% by mix-foaming type and 9.7-23.6% by pre-foamed type than cement mortar. 3.At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. The increasing rates of absorption rates were increased in richer mixing ratio and more addition of foaming agent. 4.Absorption rates when immersed in 72hours were showed up tp 3.41-5.85 times by mix-foaming type and 1.05- 1.S5times by pre -foamed type than cement mortar, it was significantly higher at the early stage of immersed time than cement mortar. 5.The correlations between bulk density and absorption rate were highly singnificant, respectively. The multiple regression equations of bulk density and absorption rate were computed depending on a fuction of mixing ratio and addition of foaming agent. it was highly significant respectively.

  • PDF

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Remarks on Single-Frequency Two-Photon Absorption$^\dag$

  • Lee, Duck-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.338-340
    • /
    • 1987
  • The single-frequency two-photon absorption tensor is carefully rederived and examined. It is pointed out that the conventionally used tensor, which has been formally deduced from the different-frequency two-photon absorption tensor, can give an incorrect absolute two-photon absorption rate. The identity forbidded selection rule and the polarization ratio expressions are also examined with the new tensor.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.