• 제목/요약/키워드: Absorbing torque

검색결과 4건 처리시간 0.015초

병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어 (Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles)

  • 박준영;심현성
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

자전거 주행 중 발생하는진동이 인체에 미치는 영향 (The study on the influences of vibration associated with cycling on the human body)

  • 정경렬;형준호;김사엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2009
  • This study was conducted to simulate the influence of vibration associated with cycling on the body. In this simulation the human model that the riding on a bicycle which have suspension and non-suspension front forks was used. And to arouse impact two kind of bump, 50mm height of radical raised spot and 150mm height of slow raised spot, were used. The vertical displacement of head, the vertical acceleration of head and the torque of neck joint were analysed. The results say that the function of shock absorbing was grater when passing though a 50mm height of radical raised spot then a 150mm height of slow raised spot.

  • PDF

플랜지 플렉시블 우레탄카 커플링 개발 (Development of Flange Flexible Urethane-key Coupling)

  • 조영태;이기용;이충호
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.667-671
    • /
    • 2010
  • The study was aimed at developing a power transmission coupling that is possible to transfer power without any trouble even if the two rotating shafts are making minute misalignment. The coupling that has been developed is Flange Flexible Urethane-key Coupling that connects two shafts by flanges with Urethane-key. A model coupling for use in transmitting power of 10hp was made and undergone performance evaluation and tests. Property and usefulness was proved through the test. The performance evaluation has demonstrated a property of $11.25Kgf{\cdot}m$ of allowable torque and 28.25hp of power at 1,80Orpm, which was found to be superior compared to the performance of similar couplings. Based on the performance test, study was made also for improving the shape of the Urethane-key and was successful to make the flange in smaller outside diameter. Further application test at site has proved that the product is easy to install and maintain, and has property of absorbing minute misalignment between two shafts and vibration caused there from.

회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구 (The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft)

  • 장민욱;이윤우;서영진;지상용
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.459-467
    • /
    • 2019
  • 착륙장치는 회전익 항공기 및 탑승 병력의 생명을 보호해야 하는 고도의 안전성이 요구되는 주요 구성품으로 이/착륙 시 충격을 흡수하고 지상에서 활주 및 계류 시 동체를 지지한다. 특히 항공기 동체를 지지하는 주륜 착륙장치는 지면으로부터 시작되는 충격을 완충장치와 타이어를 통해 대부분 흡수하는 역할을 수행하게 되는데, 이를 통해 항공기에 탑승한 조종사의 안전을 보장하고, 임무 수행 간 병력의 작전 운용능력을 만족시킨다. A 기종 회전익 항공기 운용 중에, 우측 주륜 착륙장치 구성품인 피스톤 핀(Piston Pin)이 다수 파손된 것이 확인되었다. 따라서 본 연구에서는 주륜 착륙장치에서 발견된 피스톤 핀(Piston Pin) 균열 현상에 대한 근본적인 원인을 찾기 위해, 파면 분석에서부터 비행 시험을 통한 착륙 하중 해석에 이르기까지 다양한 원인 규명 방법을 모색하였다. 특히 개발 당시 피스톤 핀에 적용되었던 드래그 빔(Drag beam) 구성품과의 체결 토크에 대한 영향성을 토대로 균열 발생 가능성들에 대한 분석을 수행하였으며, 이를 통해 피로 수명과 구조건전성을 확보할 수 있는 방안을 제시하였다.