• Title/Summary/Keyword: Absorbing Material

Search Result 388, Processing Time 0.023 seconds

Impact energy absorbing effect by the buckling of impact limiter's case of radioactive material transport cask (방사성물질 수송용기 충격완충제 케이스의 좌굴변형에 의한 충격흡수효과)

  • Ku, Jeong-Hoe;Seo, Gi-Seok;Min, Deok-Gi;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.826-833
    • /
    • 1998
  • The energy-absorbing characteristic of impact limiters affects the cask design so significantly that it should be evaluated as accurate as possible. The objective of this study is to find the influence of the impact limiter's steel case and gusset plates which enclose the shock absorbing cellular material on the impact energy absorption. The influence of impact limiter's steel case and gusset plate stiffeners on the impact energy absorption behavior under horizontal drop impact was evaluated for a radioactive isotope transport cask. Though the impact limiters mitigate the impact damage of the cask, the impact limiter's steel case and gusset plate stiffeners increase the impact force so significantly that should be designed as soft as possible. The impact analysis without considering impact limiter's steel case and gusset plates stiffener gives non-conservative results, so the stiffness of the steel case and gusset plates should be considered in impact analysis.

Properties of Cement Matrix Using Vegetable Activated Carbon (식물성 활성탄을 활용한 시멘트 경화체의 특성)

  • Lee, Jae-Hoon;Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.138-139
    • /
    • 2020
  • With the rapid progress of industrialization, indoor air quality is a very important factor for modern people who spend most of their day indoors. The recent issue of fine dust and radon on the portal site's popularity search shows that interest in indoor air quality has increased. Fine dust causes respiratory diseases, and radon causes severe lung cancer. The new material was tested using plant activated carbon, palm activated carbon and bamboo activated carbon. Both palm activated carbon and bamboo activated carbon are porous materials and generate smooth physical adsorption. As a result of the experiment, both the activated carbon tends to gradually decrease in strength and fluidity as the replacement ratio increases. The reason for this is that both activated carbons have the property of absorbing moisture, so it is judged that the strength is lowered by absorbing moisture necessary for curing. In the case of fluidity, it is judged that the fluidity is reduced by absorbing the moisture required for the flow. In the future, if the problem of the color of the finished cured body is compensated, it will be possible to manufacture a functional finishing board to replace the existing interior finishing material.

  • PDF

Design and Fabrication of Wide-band Ferrite Absorber Used in Anechoic Chamber

  • Kim, Sung-Soo;Park, Ik-Kown
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.25-27
    • /
    • 1997
  • Ferrite tile absorber is of great concern for the application to anechoic chambers due to the growing demand of EMI or EMC measurements. This paper investigates the magnetic, dielectric and microwave absorbing properties of a Ni-An ferrite for the purpose. A design chart was constructed with the solutions of impedance-matching equation in the radio frequencies (30 MHz - 1 GHz). The material parameters for zero-reflection are predicted from the chart. The magnetic and dielectric properties of sintered Ni-Zn ferrite is found to be well suited for this requirements. A superior microwave absorbing properties (frequency band and absorber thickness) of the samples are demonstrated.

  • PDF

A Study on Curving noise control by absorption treatment in Urban Rail Transit System (흡음에 의한 도시철도 곡선부 소음저감에 관한 연구)

  • 이재원;손진희;장서일
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.603-608
    • /
    • 2002
  • Sound absorbing materials are applied to the exposed surfaces of curved subway tunnel for the reduction of curving noise level. Before the treatment, acoustical engineering simulation is performed to predict the noise level reduction for different kinds and amounts of absorbing material. The principle of geometrical acoustics is utilized to Peform the simulation efficiently and accurately. The noise levels of the inside and outside of running car body are measured to find the noise level reduction. The average noise level reduction of 8 ㏈ has been attained. It has been shown that the simulated results are comparable to the measured ones.

  • PDF

Evaluation of Absorbing Energy for the Rockfall Protection Fence Using High Carbon Steel Wire Rods (경강선 적용 낙석방지울타리의 흡수에너지 평가)

  • Lee, Yongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.49-60
    • /
    • 2009
  • In order to develop a new rockfall protection fence using high carbon steel wire rod (HSWR) material instead of the conventional wire rope material, the author has conducted the laboratory strength tests of both materials and their connections, and carried out evaluation of absorbing rockfall energy through the vertical field rockfall tests. The vertical filed rockfall tests showed that the new rockfall protection fence with 12 rows of the HSWR could absorb more rockfall energy than 50 kJ which stands for the typical design criteria. In addition, when the quantity of HSWR was increased up to the 16 rows, the capacity of absorbing energy was greatly improved. The new rockfall protection fence was successfully applied to the highway rock-cut slope. As a result of the filed application, its constructability was similar to the conventional fence, but its total image was improved as simple and clean. The total construction cost was saved up to 20% in comparison with the conventional one.

  • PDF

A Study for the Characteristics of multi-layer VOx Thin Films for Applying to IR Absorbing Layer (적외선 흡수층 응용을 위한 다층 산화 바나듐 박막의 특성에 관한 연구)

  • 박철우;문성욱;오명환;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.859-864
    • /
    • 2000
  • Recently IR detecting devices using MEMS have been actively studied. Microbolometer, one of these devices, detects the change of resistivity as the change of temperature of the device by absorbing IR, IR absorbing materials for microbolometer should have high TCR value and low noise characteristics which depends on resistivity. We fabricated multi-layer VOx thin films to improve the IR detectivity of uncooled IR devices and analyzed IR absorbing characteristics. We fabricated multi-layer VOx thin films by RF reactive sputtering method on SiNx substrate and changed characteristics using the different thickness of V and V$_2$O$\_$5/ thin films. Then we annealed them under 300$\^{C}$. The TCR (Temperature Coefficient of Resistance) measurement was carried out to estimate the IR detectivity of multi-layer VOx thin films. XRD (X-Ray Diffraction) analysis was carried out to estimate the IR detectivity of multi-layer VOx thin films. ZXRD (X-Ray Diffraction) analysis was used to find out phases and structures of V and V$_2$O$\_$5/ thin films. AES (Auger Electron Spectroscopy) analysis was used to find out composition of multi-layer VOx thin films before and after annealing. We obtained the optimum thickness range of V and V$_2$O$\_$5/ thin films from the result of AES analysis. We changed the thickness of V$_2$O$\_$5/ about 20 to 150 $\AA$ and thickness of V about 10 to 20 $\AA$. As the result of this, TCR value of multi-layer VOx thin films was about -2%/k and the resistivity was ∼1Ωcm.

  • PDF

Design and Properties of Microwave Absorbing Structures Composed of Fiber Reinforced Composites (섬유강화 복합재료로 구성된 전파흡수구조재의 설계 및 특성)

  • 김상영;김성수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1002-1008
    • /
    • 2001
  • The absorbing structure composed of multi-layered fiber reinforced composite materials was designed and microwave absorbing properties are investigated. On the basis of transmission line theory, the theoretical equations to predict the reflection loss and the appropriate composite material for each functional layer are suggested. The most significant result of this study is the successful design and fabrication of triple-layered composite laminates which has the superior microwave absorbing porperties (more than 10 dB in 4∼12 GHz range), without using the ferrite filler in the impedance transforming layer. In the two-layered composite laminate (absorber/substrate), however, the use of ferrite filler (about 40 wt %) in the absorbing layer is necessary to obtain the certain level of microwave absorbance. By combining the glass-fiber composite with ferrite filler and carbon-fiber composite substrate, the microwave absorbing properties more than 10 dB in 4∼12 GHz frequencies than be obtained.

  • PDF

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Prediction of the Sound Absorption Coefficient for Multiple Perforated-Plate Sound Absorbing System by Transfer Matrix Method (전달행렬법에 의한 다중 다공판 흡음시스템의 흡음계수 예측)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.653-658
    • /
    • 2001
  • In this study, a new practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. In order to validate the proposed method, the absorption coefficients calculated by transfer matrix method for single perforated plate were first compared with the absorption coefficients measured by SWR method according to different porosity, hole diameter, and thickness of the perforated plate. Based on the comparison results, transfer matrix method was further applied to double and triple perforated plates to evaluate the absorption coefficients. The experimental results showed that the absorption coefficients from transfer matrix method generally agreed well with the corresponding absorption coefficients from SWR method. However, due to the limitations of the impedance model used in this study, the measured values were differed with the calculated values for small porosity, hole diameter, and thickness in size of the perforated plate indicating the need of impedance model development for multiple perforated-plate sound absorbing system covering wide ranges of porosity, hole diameter, and thickness of the perforated plate.

  • PDF

Three-dimensional Numerical Study on Acoustic Performance of Large Splitter Silencers (대형 스플리터 소음기 성능에 대한 3차원 수치해석적 연구)

  • Baek, Seonghyeon;Lee, Changheon;Gwon, Daehun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Acoustic performance of splitter silencers was investigated by using 3-dimensional commercial software and experiments. Flow resistivity of sound absorbing material was indirectly estimated by using an impedance tube setup and a curve fitting method. In addition the acoustic impedance of perforated plate was determined by an empirical formulation. Such properties have been used as input parameters in the commercial software. The prediction for a splitter silencer with 1000 mm length was compared with the experimental result. The numerical method is then applied to identify the effects of number of splitters, length of splitters, absorptive material density, and porosity of a perforated plate on the performance of the splitter silencers. As the number and length of splitter increases, the acoustic performance significantly increases. Although the increase of density of absorptive material also increase the acoustic performance, a change in the density over a certain level hardly affect it. The increase of porosity will enhance the performance especially at higher frequencies.