• Title/Summary/Keyword: Absorbed Doses

Search Result 206, Processing Time 0.024 seconds

DISTRIBUTION OF ABSORBED DOSES TO THE IMPORTANT ORGANS OF HEAD AND NECK REGION IN PANORAMIC RADIOGRAPHY (파노라마 촬영시 두경부 주요기관에 대한 흡수선량 분포)

  • Kim Byeong Sam;Choi Karp Shik;Kim Chin Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.2
    • /
    • pp.253-264
    • /
    • 1990
  • The purpose of this study was to estimate the distribution of absorbed doses of each important organs of head and neck region in panoramic radiography. Radiation dosimetry at internal anatomic sites and skin surfaces of phantom (RT-210 Humanoid Head & Neck Section/sup R/) was performed with lithium fluoride (TLD-100/sup R/) thermoluminescent dosimeters according to change of kilovoltage (65kVp, 75kVp and 85kVp) with 4 miliamperage and 20 second exposure time. The results obtained were as follows; Radiation absorbed doses of internal anatomic sites were presented the highest doses of 1.04 mGy, 1.065 mGy and 2.09 mGy in nasopharynx, relatively high doses of 0.525 mGy, 0.59 mGy and 1.108 mGy in deep lobe of parotid gland, 0.481 mGy, 0.68 mGy and 1.191 mGy in submandibular gland. But there were comparatively low doses of 0.172 mGy and 0.128 mGy in eyes and thyroid gland that absorbed dose was estimated at 85kVp. Radiation absorbed doses of skin surfaces were presented the highest doses of 1. 263 mGy, 1.538 mGy and 2.952 mGy in back side of first cervical vertebra and relatively high doses of 0.267 mGy, 0.401 mGy and 0.481 mGy in parotid gland. But there were comparatively low doses of 0.057 mGy, 0.068 mGy and 0.081 mGy in philtrum and 0.059 mGy in middle portion of chin that absorbed dose was estimated at 85kVp. According to increase of kilovoltage, the radiation absorbed doses were increased 1.1 times when kilovolt age changes from 65kVp to 75kVp and 1.9 times when kilovolt age changes from 75kVp to 85kVp at internal anatomic sites. According to increase of kilovoltage, the radiation absorbed doses were increased 1.3 times when kilovolt age changes from 65kVp to 75kVp and 1.6 times when kilovoltage changes from 75kVp to 85kVp at skin surfaces.

  • PDF

Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software (PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

Absorbed and effective dose from newly developed cone beam computed tomography in Korea (최근 개발된 cone beam computed tomography의 흡수선량 및 유효선량 평가)

  • Lee, Jong-Nyeong;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.93-102
    • /
    • 2007
  • Purpose: Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absorbed and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Materials and Methods: Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposures. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Results: Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Conclusion: Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  • PDF

LiF(Mg, Cu, Na, Si) Thermoluminescent Dosimeters for In-phantom Dosimetry of $^{60}Co\;{\gamma}$-rays (LiF(Mg, Cu, Na, Si) 열형광선량계를 사용한 $^{60}Co\;{\gamma}^-$선의 수중 흡수선량 측정)

  • Kim, Hyun-Ja;Chung, Woon-Hyuk;Lee, Woo-Gyo;Doh, Sih-Hong
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 1990
  • Newly developed LiF(Mg, Cu, Na, Si) thermoluminescence phosphors sealed in a plastic capsules (32mm dia., 0.9mm wall thickness) were used for in-phantom dosimetry of $^{60}Co$ $\gamma$-irradiation. The absorbed doses in water were determined by applying the general cavity theory to the absorbed dose in TLD cavity, which was computed from exposure. The absorbed doses at various sites in the water-phantom were measured by LiF(Mg, Cu, Na, Si) TLD and compared with doses obtained by the ionization method. Both results were consistent within the experimental fluctuation$({\pm}3%)$ Central axis percentage depth doses and phantom-air ratios measured by LiF(Mg. Cu, Na, Si) TLD showed good agreement with the published values[Br. J. Radiology, Suppl. 17(1983)].

  • PDF

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

Synthesis of Nickel Nanoparticles using Electron Beam Irradiation

  • Lee, Seung Jun;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.241-245
    • /
    • 2015
  • A study on the preparation of nickel oxide nanoparticles using electron beam irradiation is described. Nickel nanoparticles were synthesized with nickel chloride hexahydrate as a metal precursor and different sodium hydroxide concentrations using electron beam irradiation. The effects of sodium hydroxide concentration and electron beam absorbed doses were investigated. The samples were synthesized at different sodium hydroxide concentrations and with absorbed doses of 100 to 500 kGy at room temperature. Synthesized nanoparticles were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer (VSM). The nanoparticle morphologies seemed to be non-spherical and aggregated. The 1:1 molar ratio of nickel chloride hexahydrate and sodium hydroxide showed a higher purity and saturation magnetization value of 13.0 emu/g. The electron beam absorbed dose was increased with increasing nickel nanoparticle nucleation.

Cancer Risk Assessment Due to Natural and Fallout Activity in Some Cities of Pakistan

  • Ahad A.;Matiullah Matiullah;Bhatti Ijaz A.;Orfi S.D.
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The measured mean activities of $^{226}Ra,\;^{232}Th,\;^{40}K\;and\;^{137}Cs$ in the soil of Bahawalpur, Bahawalnagar and Rahimyar Khan Bistricts were 32.9, 53.6, 647.4 and 1.8 Bq $kg^{-1}$. The average absorbed dose rate calculated from these activities was 74.3 nGy $h^{-1}$ and the mean annual effective dose rate was found to be 0.46 mSv $y^{-1}$. Absorbed doses to different body organs were derived from annual effective doses using tissue weighting factors. Radiation induced fatal cancer risks were assessed by using ICRP 60 Model. Estimations incurred 184deaths per year due to cancer.

COMPARISON OF ABSORBED DOSES RESULTING FROM VARIOUS INTRAORAL PERIAPICAL RADIOGRAPHY (전악 치근단 방사선사진 촬영시 촬영조건에 따른 흡수선량 변화에 대한 연구)

  • Kang Mi-Ae;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.297-308
    • /
    • 1995
  • This study was designed to measure the absorbed dose to organs of special interest from full mouth with intraoral film(l4 films) and to compare the five periapical techniques. Thermoluminescent crystals(TLD-100 chip) were located in brain, orbit, bone marrow of mandibular ramus, bone marrow of mandibular body, bone marrow of 4th cervical spine, parotid gland, submandibular gland and thyroid gland. X -ray machine was operated at 70kVp and round collimating film holding device(XCP) and rectangular collimating film holding device(Precision Instrument) were used. The distance from the X-ray focus to the open end of the collimator was 8 inch, 12 inch and 16 inch. The results were as follows : 1. The absorbed dose was the highest in bone marrow of mandibular body(5.656mGy) and the lowest in brain (0.050mGy). 2. Generally, the lowest absorbed dose was measured from 16 inch cylinder, rectangular collimating film holding device with paralleling technique. But, in bone marrow of mandibular body and the floor of mouth, the highest absorbed dose was measured from 12 inch cylinder, rectangular collimating film holding device with paralleling techniques. 3. Comparing of five intraoral radiographic techniques, it was appeared statistically significant reduction of the absorbed doses measured with rectangular collimating film holding device compared to XCP film holding device (P<0.05). 4. No statistically significant reduction in the absorbed dose was found as cylinder length was changed(P>0.05).

  • PDF